

SAP® Essentials
Expert SAP knowledge for your day-to-day work

Whether you wish to expand your SAP knowledge, deepen it, or master a use
case, SAP Essentials provide you with targeted expert knowledge that helps sup-
port you in your day-to-day work. To the point, detailed, and ready to use.

SAP PRESS is a joint initiative of SAP and Galileo Press. The know-how offered by
SAP specialists combined with the expertise of the Galileo Press publishing house
offers the reader expert books in the field. SAP PRESS features first-hand informa-
tion and expert advice, and provides useful skills for professional decision-making.

SAP PRESS offers a variety of books on technical and business related topics for
the SAP user. For further information, please visit our website:
http://www.sap-press.com.

Jürgen Schwaninger
ABAP Development for Materials Management in SAP
2001, app. 270 pp.
978-1-59229-373-5

Valentin Nicolescu, et al.
Practical Guide to SAP NetWeaver PI—Development
2010, app. 500 pp.
978-1-59229-334-6

Horst Keller
The Official ABAP Reference
2nd ed. 2005, app. 1,213 pp.
978-1-59229-039-0

Horst Keller, Sascha Krüger
ABAP Objects, Second Edition
2007, app. 1,000 pp.
978-1-59229-079-6

http://www.sap-press.com

Sergey Korolev

ABAP™ Development for Financial Accounting

Custom Enhancements

Bonn � Boston

Dear Reader,

As you hold ABAP Development for Financial Accounting in your hands, you are steps
away from learning how to create custom enhancements to standard ABAP code in
SAP ERP Financials Financial Accounting (release 6.0) in order to address all corpo-
rate and/or country-specific business rules. Thanks to the expert guidance of Sergey
Korolev, this book will teach you how to efficiently and effectively customize data
flow between subsystems and external systems.

I never know what to expect when working with a first-time author, but my experi-
ence with Sergey was a pleasure from day one. His expertise is unparalleled, his
dedication and effort were superhuman, and at every step of the way he remained
positive, upbeat, and—yes—funny. Although I ruined many a weekend for him, he
always came through…and cheerfully, at that. Working with him was truly a joy.

We appreciate your business, and welcome your feedback. Your comments and
suggestions are the most useful tools to help us improve our books for you, the
reader. We encourage you to visit our website at www.sap-press.com and share your
feedback about this work.

Thank you for purchasing a book from SAP PRESS!

Kelly Grace Harris
Editor, SAP PRESS

Galileo Press
Boston, MA

kelly.harris@galileo-press.com

www.sap-press.com

mailto:kelly.harris%40galileo-press.com?subject=
http://www.sap-press.com

﻿

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book, you have agreed
to accept and adhere to the copyrights. You are entitled to use this e-book for
personal purposes. You may print and copy it, too, but also only for personal use.
Sharing an electronic or printed copy with others, however, is not permitted, neither
as a whole nor in parts. Of course, making them available on the Internet or in a
company network is illegal as well.

For detailed and legally binding usage conditions, please refer to the section Legal
Notes.

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy:

Imprint

This e-book is a publication many contributed to, specifically:

Editor Kelly Grace Harris
Developmental Editor Laura Korslund
Copyeditor Julie McNamee
Cover Design Graham Geary
Photo Credit Image Copyright KellyM. Used under license from Shutterstock.com.
Production E-Book Graham Geary
Typesetting E-Book Publishers’ Design and Production Services, Inc.

We hope that you liked this e-book. Please share your feedback with us and read
the Service Pages to find out how to contact us.

The Library of Congress has cataloged the printed edition as follows:
Korolev, Sergey.

ABAP development for financial accounting : custom enhancements / Sergey Korolev. — 1st ed.

p. cm.

Includes index.

ISBN-13: 978-1-59229-370-4

ISBN-10: 1-59229-370-0

1. Accounting—Data processing. 2. SAP ERP. 3. ABAP/4 (Computer program language) I. Title.

HF5679.K595 2011

657.0285’5133—dc22

2010051980

ISBN 978-1-59229-370-4 (print)
ISBN 978-1-59229-739-9 (e-book)
ISBN 978-1-59229-740-5 (print and e-book)

© 2011 by Galileo Press Inc., Boston (MA)
1st edition 2011

7

Contents

Introduction  ... 	 13
Acknowledgments  .. 	 15

1	 Enhancement Types  ... 	 17

1.1	 Customer Enhancements (CMOD/SMOD)  	 17
1.1.1	 Function Module Exit   ... 	 18
1.1.2	 Menu Exit   .. 	 19
1.1.3	 Customer Exit Subscreen  ... 	 20
1.1.4	 Finding Customer Enhancements  	 21
1.1.5	 Enhancements Summary  ... 	 23

1.2	 Business Transaction Events (BTE)  .. 	 24
1.2.1	 Events and Processes  ... 	 24
1.2.2	 Configuration  .. 	 25
1.2.3	 Finding Business Transaction Events  	 30
1.2.4	 Business Transaction Events Summary  	 31

1.3	 Business Add-In (BAdI)  .. 	 31
1.3.1	 Classic BAdI  .. 	 32
1.3.2	 Kernel-Based BAdI  .. 	 34
1.3.3	 Filtered BAdIs   .. 	 35
1.3.4	 BAdI Subscreen and Function Codes  	 36
1.3.5	 Finding BAdIs  .. 	 37
1.3.6	 BAdI Summary  .. 	 37

1.4	 Implicit Enhancements  ... 	 38
1.5	 Summary  ... 	 38

2	 Master Data Enhancements  .. 	 39

2.1	 General Ledger Accounts  ... 	 39
2.1.1	 Main Transaction Codes for General Ledger

Account Master Data  .. 	 40
2.1.2	 Data Enhancement of General Ledger Account

Master Data Tables  .. 	 41
2.1.3	 Screen Layout Enhancement   ... 	 52

8

Contents

2.1.4	 Other Enhancements Available in General Ledger
Account Master Data  .. 	 65

2.1.5	 General Ledger Summary  .. 	 67
2.2	 Accounts Payable and Accounts Receivable  	 68

2.2.1	 Maintenance Transactions  ... 	 68
2.2.2	 Data Enhancements  .. 	 68
2.2.3	 Screen Layout Enhancements  .. 	 71

2.3	 Accounts Receivable (Customers)  ... 	 72
2.3.1	 Define Your Own Subscreen  .. 	 72
2.3.2	 Define Tabstrip Layout (Customer Screen Group)  	 74
2.3.3	 Activating a Screen Group via a BAdI Implementation  	 76
2.3.4	 Linking Your Own Subscreen  ... 	 79
2.3.5	 Making the Screen Field Transaction Mode Aware and

Updatable  ... 	 81
2.3.6	 Calling Moments of BAdI Methods  	 85
2.3.7	 GUI Status Enhancement with Open FI (BTE)  	 87
2.3.8	 Other Open FI (BTE) Events  .. 	 90
2.3.9	 Function Module Exits  .. 	 91

2.4	 Customer Credit Management Data and Screen Enhancement  	 91
2.4.1	 GUI Status Enhancement  ... 	 92
2.4.2	 Data Enhancement  .. 	 93
2.4.3	 Status Screen Enhancement  ... 	 93
2.4.4	 Defining and Activating Partner Products in

Transaction FIBF  .. 	 96
2.4.5	 Setting External Partner Functions  	 97
2.4.6	 Further GUI Status Enhancement with Table T061V  	 99
2.4.7	 Additional Credit Management Data User Exits  	 102

2.5	 Accounts Payable (Vendors)  ... 	 102
2.5.1	 Screen and GUI Status Enhancement with Function

Group FARI  ... 	 103
2.5.2	 BAdI Definitions  .. 	 106
2.5.3	 Business Transaction Events  ... 	 109
2.5.4	 Function Module Exits  .. 	 109

2.6	 Summary  ... 	 110

3	 Posting to Accounting  ... 	 111

3.1	 The Technical Structure of an Accounting Document  	 111
3.1.1	 The Header   .. 	 112

9

Contents

3.1.2	 Items  .. 	 113
3.1.3	 Parked Document Tables  ... 	 115
3.1.4	 Secondary Indices  ... 	 116
3.1.5	 Total Tables   .. 	 117

3.2	 Core Program Modules of Accounting  .. 	 121
3.2.1	 Screen Enhancement of Accounting Posting

Transactions  .. 	 121
3.2.2	 Screen Enhancement of General Ledger Posting

Enjoy Transactions with BAdI  .. 	 127
3.2.3	 Screen Enhancement of Customer or Vendor Enjoy

Transactions with BAdI  .. 	 130
3.3	 Accounting Document Data Enhancement  	 135
3.4	 Data Processing Enhancements during Dialog Processing  	 137

3.4.1	 Data Processing BTEs  .. 	 137
3.4.2	 BTE Processes  .. 	 138
3.4.3	 BAdI  ... 	 139
3.4.4	 Substitutions and Validations  .. 	 140

3.5	 Data Processing Enhancements during Document Saving  	 143
3.5.1	 BTE Events  .. 	 144
3.5.2	 BTE Processes   ... 	 145
3.5.3	 BAdIs  .. 	 146

3.6	 SAP Internal Techniques for Processing Accounting Data
Flow (RWIN)  .. 	 146
3.6.1	 RWIN Summary  .. 	 148

3.7	 Differences in Data Processing between Dialog Transactions
and Program Functions  .. 	 148
3.7.1	 Additional BAdI AC_DOCUMENT  	 149
3.7.2	 BTEs That Are Not Called  .. 	 149
3.7.3	 Ending BTE 00001050 (POST DOCUMENT:

Accounting Interface)  .. 	 149
3.8	 Summary  ... 	 149

4	 Enhancements in Reports  .. 	 151

4.1	 Technical Architecture of the Line-Item Report  	 151
4.1.1	 Header and Footer Output Enhancement  	 153
4.1.2	 Menu Enhancement with BTE Events  	 156
4.1.3	 Menu Enhancement with BAdI  .. 	 157

10

Contents

4.1.4	 Output Layout Enhancement  .. 	 161
4.2	 New SAP General Ledger Account Line-Item Report

Enhancements  ... 	 163
4.2.1	 Header and Footer Output Enhancement  	 164
4.2.2	 Extended Authorization Check  .. 	 164
4.2.3	 Menu Enhancement  .. 	 164
4.2.4	 Enhancing the Output Layout   ... 	 165

4.3	 Summary  ... 	 166

5	 Inbound Scenarios in Financial Accounting  	 167

5.1	 Master Data Migration and Distribution  	 167
5.1.1	 Batch Input  ... 	 167
5.1.2	 HR Master Data  .. 	 177
5.1.3	 ALE/IDoc  .. 	 178

5.2	 Postings Inbound Scenarios  .. 	 186
5.2.1	 Batch-Input or Direct Input  ... 	 186
5.2.2	 Payroll Results  ... 	 187
5.2.3	 Postings via IDoc  ... 	 188
5.2.4	 Electronic Bank Statement  ... 	 189

5.3	 Summary  ... 	 195

6	 Outbound Scenarios in Financial Accounting   	 197

6.1	 Master Data Distribution  ... 	 197
6.1.1	 Batch Input  ... 	 197
6.1.2	 ALE/IDoc tools  .. 	 198

6.2	 Dunning   ... 	 203
6.2.1	 BTEs in Transaction F150  ... 	 203
6.2.2	 BTEs during the Dunning Run  ... 	 207
6.2.3	 Dunning Summary  .. 	 216

6.3	 Payment Program  .. 	 216
6.3.1	 User Exits in Transaction F110  ... 	 217
6.3.2	 User Exits in Payment Program SAPF110S  	 219

6.4	 Summary  ... 	 224

11

Contents

7	 Workflow as a User Exit  .. 	 227

7.1	 Workflow Events: Linking System Actions with External
Applications  ... 	 228
7.1.1	 Event Handling  .. 	 228
7.1.2	 Event Creation Options  ... 	 231
7.1.3	 Application Development Implications  	 231

7.2	 Practical Example  ... 	 232
7.2.1	 Prerequisites  ... 	 232
7.2.2	 Workflow-Enabled Class  .. 	 233
7.2.3	 Standard Task  .. 	 236
7.2.4	 Event Creation  .. 	 240
7.2.5	 Now Test!  ... 	 241

7.3	 Summary  ... 	 243

The Author   .. 	 245
Index  .. 	 247

Service Pages .. 	 I
Legal Notes  .. 	 III

13

“One can’t believe impossible things,” said Alice.
“I daresay you haven’t had much practice,” said the Queen.

Introduction

Sitting in a rapid train with more than three hours of travel ahead and nothing to
watch through the window except for the black-inked void—this is a good working
environment for writing an introduction to the book.

When I started working with SAP products, it was a great surprise that a big part
of a developer’s knowledge cannot be obtained from legitimate sources such as
technical guides, but must rather be absorbed from a kind of folklore: word of
mouth from a more experienced colleague, or from one or another Internet com-
munity. The most esoteric kind of knowledge was methods and ways of enhancing
the system, and, during those days, I often wished I had a book or two with a more
or less comprehensive description of available user-exits. It now turns out that,
instead of reading such a book, I have had the opportunity to write one. Thus, for
the last six months, I have been trying to convert a developer’s folklore and my
own experience in FI programming into a more systematic exposition.

The reader of this book should have a general knowledge of the ABAP program-
ming language, including ABAP objects, and also have a basic understanding of
Financial Accounting with SAP ERP Financials—in other words, the reader should
be familiar with the phrase “general ledger account.”

This book mainly covers Financial Accounting with SAP ERP Financials, and does
not include Controlling and Asset Accounting. The structure of the book is as
follows:

EE Chapter 1	
This chapter is an introduction to enhancement technologies you can come across
when fulfilling development tasks in Financial Accounting.

© 2013 by Galileo Press Inc., Boston (MA)14

Introduction

EE Chapter 2 	
This chapter discusses enhancement techniques for Financial Accounting master
data: general ledger accounts, Accounts Receivable, and Accounts Payable.

EE Chapter 3 	
This chapter deals with the accounting document and the process of its posting.
This is probably the most sensitive functionality in the system, as it has to do
with actually counting money.

EE Chapter 4 	
In this chapter, we discuss methods of enhancement for some standard Financial
Accounting reports.

EE Chapters 5 and 6 	
These chapters show possible ways of enhancing several inbound and out-
bound scenarios when the SAP system exchanges accounting data with external
systems.

EE Chapter 7 	
This chapter is a quick introduction to SAP Business Workflow, which is another
tool—with often underestimated capabilities and overestimated complexity—that
you can use to extend system functionality.

All coding samples and screenshots were prepared using the commercially available
SAP ECC 6.0 IDES system.

When Stefan Proksch (Senior Editor at Galileo Press at that time) asked me in April
of 2010 if I felt capable of writing a book, I answered “Yes”—but at the same time,
a part of my mind believed it was impossible. I even thought it was impossible
when the first version of the table of contents was completed. Nevertheless, the
book came out. Thus, the Queen was possibly right.

Sergey Korolev
Moscow, Russia

15

Acknowledgments

I thank Stefan Proksch for the first impulse to start this book; I also greatly thank
Kelly Harris, who chased me during the writing process in a friendly yet strong
manner. I also would like to thank Laura Korslund and Julie McNamee, who were
the editors of the book and worked hard to turn my ugly English into something
more readable.

Finally, I thank my family, who survived my absent-mindedness for the last few
months.

© 2013 by Galileo Press Inc., Boston (MA)

17

We begin by reviewing the available enhancement techniques in the SAP
system. This review will help you better understand the chapters that follow.

1	 Enhancement Types

Even extremely configurable software, such as SAP ERP, can’t account for all of the
specific requirements of clients. Also, the future is unpredictable; that is, changes
in business, in country legislation, and so on have an impact on business-specific
software and how companies manage their businesses. In some situations, the
standard (even configurable) applications can’t cope with particular business cir-
cumstances. In these circumstances, customers might want to amend their system’s
behavior by implementing custom program solutions.

SAP delivers its software with full source code. In a way, it can be considered as
an open source system. And before introducing any enhancement techniques, SAP
customers modified the source code to implement unavoidable logic extensions.
Even in the most recent versions of SAP ERP, some developing activities such as
sales document user exits or pricing formula creation are system modifications
(due to their formal nature).

The concept of enhancements was born as an attempt to make altering source code
more controllable, while retaining considerable freedom for the customer in tailor-
ing unique and business-specific program logic into an existing system.

The available enhancement techniques we’ll discuss in this chapter are by essence program
hooks, which allow the customer to couple up custom program code with the system.
At the same time, these hooks are under SAP ERP control, which makes it possible for
the system manufacturer to remain responsible for the whole system’s behavior.

1.1	 Customer Enhancements (CMOD/SMOD)

Customer enhancements (also known as customer modifications) are the oldest
type of enhancement tools available in SAP (the earliest online help for SAP R/3
3.0A shows that customer enhancements were already there).

© 2013 by Galileo Press Inc., Boston (MA)18

Enhancement Types1

The three types of components used in customer enhancements are function mod-
ule exits, menu exits, and customer subscreens. Several components of the same
functional purpose are combined into an enhancement. You can display particular
enhancements in Transaction SMOD.

To implement a particular exit, a developer must first create an enhancement project
in Transaction CMOD and assign one or more enhancements to the project. When
the developer activates an enhancement project, all components of all enhance-
ments that are assigned to the specific project become active. Because the project is
a development and cross-client object, it is transported by the workbench change
request.

1.1.1	 Function Module Exit

The customer exit function module component is sometimes called in SAP ERP in
the form of the CALL CUSTOMER-FUNCTION NNN statement, where NNN is a number
suffix. In runtime, the statement is converted into the call of the function module
EXIT_<program name>_nnn where <PROGRAM NAME> is the name of the currently run-
ning main program. For example, the statement CALL CUSTOMER-FUNCTION ‘001’ in
program SAPMM06E is converted into CALL FUNCTION ‘EXIT_SAPMM06E_001’.

The source code of any function module exit has one INCLUDE statement referencing
an include with a name starting with prefix ZX, as shown in Listing 1.1.

FUNCTION EXIT_SAPLCATS_011 .
*”---
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(SAP_FCODE) LIKE SY-UCOMM
*” VALUE(SAP_TCATS) LIKE TCATS STRUCTURE TCATS OPTIONAL
*” VALUE(SAP_CATSFIELDS) LIKE CATSFIELDS_COMM
*” STRUCTURE CATSFIELDS_COMM OPTIONAL
*” VALUE(SAP_CATSD) TYPE CATSD_EXT_TAB OPTIONAL
*” VALUE(SAP_CATSW) TYPE CATSW_TAB OPTIONAL
*” VALUE(SAP_PERNRLIST) TYPE PERNR_LIST_TAB OPTIONAL
*” VALUE(SAP_CURSOR_FIELD) TYPE TEXT70 OPTIONAL
*” VALUE(SAP_CURSOR_CATSDLINE) LIKE SY-STEPL OPTIONAL
*”---
INCLUDE ZXCATU12 .
ENDFUNCTION.

Listing 1.1  Example of Customer Exit Function Module

19

Customer Enhancements (CMOD/SMOD) 1.1

The prefix ZX in a name alerts the compiler that the referenced include can be
nonexistent. In that case, the INCLUDE statement is ignored by the compiler. To
implement enhancement logic, create a corresponding ZX include.

1.1.2	 Menu Exit

A number of SAP enhancements also include menu exits. Menu exits are just hid-
den function codes included into particular SAP GUI statuses of an SAP standard
program. Due to naming conventions, these function codes start with “+”. For
example, SAP enhancement CATS0011 includes several function codes: +CU2, +CU3,
and +CU4 (see Figure 1.1). When defining an enhancement project that includes
menu exits, you can assign an icon and all necessary texts to the menu entry. The
menu entries become visible after you activate the project.

Figure 1.1  Enhancement with Menu Entries

© 2013 by Galileo Press Inc., Boston (MA)20

Enhancement Types1

As a rule, the enhancement should include a customer function module component
where you implement the customer function code processing logic. For example,
enhancement CATS0011 also includes function EXIT_SAPLCATS_011, which is called
to process enhanced function codes.

1.1.3	 Customer Exit Subscreen

Some enhancements include customer subscreen components. For example,
enhancement CATS0012 includes a subscreen component (see Figure 1.2).

Figure 1.2  Subscreen Components of Enhancement CATS0012

The subscreen component includes a calling screen and customer subscreen number.
Enhancement CATS0012 has subscreen 3000, which is included into three different

21

Customer Enhancements (CMOD/SMOD) 1.1

screens of program SAPLCATS. When you implement the customer subscreen,
you create the corresponding subscreen. In our example, this will be subscreen
3000 of program SAPLXCAT (which is actually function group XCAT). Usually an
enhancement with a customer subscreen also includes function module compo-
nents, whose purpose is to transfer data to and from the customer subscreen. In
enhancement CATS0012, function module EXIT_SAPLCATS_012 transfers data to an
additional subscreen.

1.1.4	 Finding Customer Enhancements

You can always find customer enhancements using either the Workbench Infor-
mation System or the (F4) Search Help in Transaction SMOD. Both tools use the
same program. As shown in Figure 1.3, click the All Selections button () to open
more fields.

Figure 1.3  Search Help Screen of Transaction SMOD

The extended search help screen includes a Component Name field where you
can enter a program name with asterisks to refine the search. For example, if you
want to find a customer exit in the main program SAPMF05A, you should enter
“*SAPMF05A*” into the Component Name field, as shown in Figure 1.4, and
run the search. You will receive an empty result set because there are no function
module exits in program SAPMF05A.

© 2013 by Galileo Press Inc., Boston (MA)22

Enhancement Types1

Figure 1.4  Extended Search Help Screen of Transaction SMOD

The most effective way of finding a customer exit for a particular transaction is by
placing a generic breakpoint. First, you have to enter debugging mode via the /H
system command, add a breakpoint at the ABAP statement CALL CUSTOMER-FUNCTION,
run the investigated transaction, and then wait to see if the breakpoint will be
hit. In the Debugger (both old and new), you select the menu path Breakpoints •
Breakpoint at • Breakpoint at statement. You then enter the statement in the
ABAP Cmnds tab, as shown in Figure 1.5.

The trouble with this method is that sometimes SAP calls customer exits directly
using CALL FUNCTION. But here you can use an additional breakpoint at function
module MODX_FUNCTION_ACTIVE_CHECK. This function module checks if a particular
customer exit function is activated and thus should always be called before the
direct call of the customer exit.

You can also do a Google search for “SAP find user exit program” to find a number
of publicly available ABAP utility reports for locating user exits. These reports just

23

Customer Enhancements (CMOD/SMOD) 1.1

retrieve a package (or development class) name from a transaction or other devel-
opment object, which you can use as a starting point and then search customer
exits for a particular package.

Figure 1.5  Defining Breakpoint at the Call Customer-Function Statement

1.1.5	 Enhancements Summary

The main drawback of customer exits is that they do not comply with the publish-
and-subscribe (P&S) paradigm. This means that you can only define a single include
for the whole logic, which can potentially be a problem if more than one developer’s
work is on the same task involving that particular customer exit. However, there
is a workaround for this. For example, you can create a BAdI definition and place
its call into the customer exit implementation. After that, you should only use the
newly created BAdI to implement additional logic.

SAP tends to supply other types of enhancements in addition to existing function
module exits at the same source code locations. So, before deciding to implement
a particular customer enhancement, you should investigate the calling point or

© 2013 by Galileo Press Inc., Boston (MA)24

Enhancement Types1

Workbench Information System for other types of user exits (BAdIs or BTEs) with
the same function.

1.2	 Business Transaction Events (BTE)

A Business Transaction Event (BTE) (also known as Open FI or FI Business Frame-
work) is an enhancement technique originally created to extend FI applications.
Currently, it is widely used in SAP ERP.

1.2.1	 Events and Processes

The BTE framework is implemented as a publish and subscribe (P&S) interface. The
P&S interface is a kind of message transferring technique in which the sender never
knows the addressee of the message, and subscribers just register their interest in
receiving messages of a particular type.

Technically, the framework allows developers to configure one or more function
modules to be called back at various moments while running an SAP application.
The subscriber function must comply with the predefined interface of the caller.
SAP distinguishes two categories of such callbacks: business transaction events and
business transaction event processes.

Note

BTE frameworks can be used to establish synchronous communication between remote
systems using the SAP RFC (Remote Function Call) protocol.

A BTE notifies its subscribers of a particular phase or situation during an application
run. Event subscribers are not supposed to change the application data. In practice,
however, SAP allows data changing in many BTEs. The full directory of BTEs is
stored in configuration table TBE01.

A BTE process also notifies subscribers of a particular situation in an application, but
unlike in BTEs, a subscriber can or is even expected to change the supplied data.
The BTE process has more sophisticated configuration options: It can be reserved
only to SAP internal developments, and it has a call mode, allowing multiple or
single subscribers to run. In addition, the BTE process has a default function name
in its configuration, which is executed if none of the configured subscriptions are
found. The full directory of BTE processes is stored in configuration table TPS01.

25

Business Transaction Events (BTE) 1.2

Both BTEs and processes can be filtered by country and application codes (an
application code is an additional identification parameter that we’ll discuss in Section
1.2.2, Configuration). However, setting the flag in the table is not enough; the flag
becomes fully active if it is taken into account at the event or process call point.

Note

Both configuration tables TBE01 and TPS01 are maintainable via Transaction SM30 and
have delivery class E, which means that you can add your own entries. However, in prac-
tice, you can’t add entries to these tables via the standard maintenance dialog because
the system requires the existence of special data elements for new entries: EVNNNNNNNN
for BTEs and PRNNNNNNNN for BTE process, where NNNNNNNN is the event or process number.
These data elements can’t be created without an SAP modification key.

To work around this issue, you can create your own maintenance view referencing these
tables and append your own BTE and process codes.

1.2.2	 Configuration

All BTE configuration options are accessible from Transaction FIBF. Configuration
activities for the BTE framework are located in the menu in Settings. Each BTE
configuration activity is divided into three groups:

EE SAP internal		
This area includes the entire configuration that SAP delivers with the
installation.

EE Partner		
This configuration area belongs to SAP’s software development partner that is
developing its own add-on or application component.

EE Customer		
This area belongs to each end-client/business that is developing application
extensions for its own needs.

Identification

Now let’s consider how to display and set up identification of the products in BTE.
The menu path of these settings in Transaction FIBF is Settings • Identification.
Here you have two options: SAP Application and Partner.

Using the SAP Application option, you can display a list of application codes with
an activation flag. The list is predefined and delivered by SAP.

© 2013 by Galileo Press Inc., Boston (MA)26

Enhancement Types1

By changing the Activation flag, you can turn on and off all BTEs and process
subscribers delivered by SAP. SAP application codes for BTEs are stored in con-
figuration table TBE11.

Note

The properties of several SAP applications can’t be changed via the maintenance view
of Table TBE11. This is hardcoded inside the maintenance dialog.

Partner identification is an arbitrary character code that serves as a grouping key
for BTE subscriber functions. As with the SAP application, the partner code has its
own activation flag, which affects all BTE subscribers assigned to it. The partner
identification codes are maintained in Table TBE12.

Products

Product code is another subscriber grouping key. There are two kinds of products:
products for partners and products for customers. These products are accessible
through the FIBF menu via menu path Settings • Product.

Partner Products

A partner product differs from a customer product because of the activation tech-
nique. With a partner product, you use a list of active products instead of checkboxes.
You maintain the list of products by accessing the menu path Settings • Product •
of a partner • Edit. Here you can see that the partner product configuration also
has an RFC destination field, which is used when all of the product subscriber
functions must be executed on a remote system (see Figure 1.6).

The list of active product is available when you access menu path Settings •
Product • of a partner • Activate. This shows a list of pairs of product code and
partner code. Partner products are stored in Tables TBE22 (the list) and TBE23
(activation).

Customer Products

The customer products are given in a simple list with product code, activation
flags, description, and an RFC destination name. See the sample customer product
list in Figure 1.7.

27

Business Transaction Events (BTE) 1.2

Figure 1.6  BTE Partner Products

Figure 1.7  BTE Customer Product List

© 2013 by Galileo Press Inc., Boston (MA)28

Enhancement Types1

BTE Configuration

You can assign a particular function module to the BTE of your interest in the
configuration. In Transaction FIBF, event settings are available via menu path
Settings • P/S Modules. SAP’s event list formally can’t be changed because the
corresponding configuration table has delivery class “S”—meaning its modification
is the same as a system modification.

Note that a partner’s event configuration slightly differs from that of a customer.
We discuss both events in the following subsections.

Partner Events

The key field set of a partner BTE configuration includes an event number, partner
code, partner product code, country code, SAP application code, and an implemen-
tation number (see Figure 1.8). The event number, partner code, and product code
are obligatory items. If you don’t fill in the country code or SAP application code,
then this particular entry won’t be sensitive to the application and country filter.

Figure 1.8  Partner BTE Configuration

29

Business Transaction Events (BTE) 1.2

The implementation number (with header title No) is a tool that supplies more
than one subscription to the event with the same other key values.

Customer Events

Customer BTE configuration is slightly different from that of partners. It doesn’t
have an implementation number key column, and it only references the customer
product. Nevertheless, you can actually supply more than one subscription to an
event by adding additional customer products.

BTE Process Configuration

BTE process settings are available via menu path Settings • Process Modules. As
with events, you have three options for SAP internal applications, partner processes,
and customer processes. SAP processes can’t be modified, due to the delivery class
of the corresponding table.

Partner and customer process configuration have similar structures. First note that
each configuration entry has only three key fields: process number, country code,
and SAP application code (see Figure 1.9). The product and partner code are nonkey
fields here; they are necessary to make the entry active/nonactive depending on
product properties.

Figure 1.9  Partner BTE Process Configuration

© 2013 by Galileo Press Inc., Boston (MA)30

Enhancement Types1

If the process allows multiple subscriptions, then at runtime, all of the matching
process subscriber functions—SAP’s, the partner’s, and the customer’s—will be
run.

For single process subscriptions, SAP uses the following logic:

1.	First, it checks if the process is marked as SAP internal; in that case, only SAP
subscribed functions are executed, and the system doesn’t check customer and
partner subscriptions.

2.	If there is at least one customer subscription, then it is executed.

3.	If there is at least one partner subscription, then it is executed, if no customer
subscriptions were found.

4.	If the system found more than one matching partner or customer subscription
for a given process, and the process does not support multiple implementations,
then an error message is issued.

1.2.3	 Finding Business Transaction Events

As a passive tool for searching BTEs or processes, you can use the BTE Information
System accessible in Transaction FIBF via the following menus:

EE Environment • Info system (P/S)

EE Environment • Info system (Processes)

The BTE Information System includes event or process documentation and the
sample function module, which can be copied into your own system. Not all BTEs
are provided with documentation, though. There are also some events or processes
that have sample function modules with incompatible interfaces, so you should
always double-check the sample function and the calling point to make sure your
function will be compatible with the call.

A more effective way of finding a BTE is placing a breakpoint into internal BTE func-
tion modules and running an SAP transaction or report of your particular interest.
When BTE is involved, the SAP system always calls function BF_FUNCTIONS_READ
for finding events and PC_FUNCTIONS_READ for processes. Thus, breakpoints in these
function modules can discover the major part of available BTE exits.

There is a problem with debugging, however, because it doesn’t always give you
100% accurate results. It isn’t always possible to examine all combinations of
parameter/system configuration combinations that lead to a BTE call.

31

Business Add-In (BAdI) 1.3

1.2.4	 Business Transaction Events Summary

Some BTEs and processes are interdependent; for example, if one BTE is used for
setting additional function codes in a GUI status and another is used for processing
such function codes, the latter will likely not work without the former. Sometimes
such interdependencies are not so obvious and can be found only by investigating
source code or while debugging.

Also, not all BTEs or processes seen in the source code are maintained in BTE
configuration tables (you will see such examples later in this book), and thus they
are not available for implementation unless you decide to modify Tables TBE01
and/or TPS01 yourself.

1.3	 Business Add-In (BAdI)

A business add-in (BAdI) is an object-oriented enhancement tool introduced in
SAP R/3 4.6c together with ABAP objects. A BAdI is also a type of P&S technique.
Generally (depending on specific BAdI definition properties), you can subscribe
more than one ABAP class to the same definition. A BAdI can be marked as SAP
internal to prevent a customer from implementing the BAdI.

Simply put, a BAdI actually defines a global object-oriented interface, and the pro-
cess of BAdI implementation is the creation of an ABAP class implementing that
interface. A BAdI runtime framework then selects the activated implementations
and runs corresponding class methods.

In SAP NetWeaver Application Server (SAP NetWeaver AS), there are two flavors
of BAdIs available: classic and kernel-based. In both cases, the BAdI definition
actually declares the ABAP object-oriented interface. When the SAP application
runs, it instantiates a BAdI class and calls its methods at appropriate moments of
data processing. SAP provides specific language statements for BAdI class instance
creation for both flavors of BAdI definitions.

BAdI definitions are maintained in Transaction SE18. Both kinds of BAdIs can allow
multiple implementations (flag Multiple use), thus allowing different developers
to independently develop several extensions of the same functionality.

The differences in how classic and kernel-base BAdIs are instantiated are discussed
next.

© 2013 by Galileo Press Inc., Boston (MA)32

Enhancement Types1

1.3.1	 Classic BAdI

The classic BAdI runtime framework is implemented in the special global class
CL_EXITHANDLER. To instantiate a BAdI definition, the static method GET_INSTANCE
of the class CL_EXITHANDLER is used. As a result, it returns a runtime reference to
the interface of the corresponding BAdI definition. This interface reference actually
points to an instance of intermittent class, which hides all of the internal functional-
ity of the classic BAdI runtime, including multiple implementations and filters (for
more about filters, see Section 1.3.3, Filtered BAdIs). Figure 1.10 shows a classic
BAdI definition as it looks in Transaction SE18.

Figure 1.10  Classic BAdI Definition Example

33

Business Add-In (BAdI) 1.3

Listing 1.2 shows an excerpt from the SAP source code with an example of a classic
BAdI instantiation and interface method call.

In the listing, the name of the BAdI definition is passed to the GET_INSTANCE method
via parameter EXIT_NAME; in this example, it is EHS_PS_002. The resulting BAdI
instance reference is passed to the variable L_BADI_INSTANCE via changing parameter
INSTANCE. By means of parameter ACT_IMP_EXISTING, the method GET_INSTANCE
returns the activation flag of the BAdI into the variable EHS_PS_002_ACTIVE.

Next to the GET_INSTANCE method call, there is a BAdI method ENTRY_INQUIERY call
with application-specific parameters.

 CALL METHOD CL_EXITHANDLER=>GET_INSTANCE
 EXPORTING
 EXIT_NAME = ‘EHS_PS_002’
 NULL_INSTANCE_ACCEPTED = ‘X’
 IMPORTING
 ACT_IMP_EXISTING = EHS_PS_002_ACTIVE
 CHANGING
 INSTANCE = L_BADI_INSTANCE
 EXCEPTIONS
 OTHERS = 1.

* call the report info-system
 CALL METHOD L_BADI_INSTANCE->ENTRY_INQUIERY
 EXPORTING
 I_FLG_NEW_TASK = EHS01_TRUE
 I_QMATNR_TAB = L_MATNR_TAB[]
 EXCEPTIONS
 ILLEGAL_REPTYPE = 1
 ILLEGAL_RVLID = 2
 ILLEGAL_LANGU = 3
 NO_MATERIALS = 4
 NO_REPORTS_FOUND = 5
 INTERNAL_ERROR = 6
 RFC_FAILED = 7
 OTHERS = 8.

Listing 1.2  Example of Classic BAdI Instantiation and Call

© 2013 by Galileo Press Inc., Boston (MA)34

Enhancement Types1

1.3.2	 Kernel-Based BAdI

For kernel-based BAdIs, SAP delivers special aided ABAP statements for access-
ing the definition: Kernel-based BAdIs were introduced together with the new
Enhancement Framework.

The new statement GET BADI is used to instantiate a kernel-based BAdI definition,
and the CALL BADI statement is used to call the BAdI interface method.

Listing 1.3 shows an example of a kernel-based BAdI instantiation and call. See that
the L_BADI variable declaration looks like an ordinary class reference declaration;
and the BAdI name CUSTOMER_ADD_DATA is used as its type. After the instantiation
with the statement GET BADI, the BAdI method READ_ADD_ON_DATA call follows.

 DATA l_badi TYPE REF TO CUSTOMER_ADD_DATA.

 TRY.

 GET BADI l_badi
 CONTEXT me.

 CALL BADI l_badi->READ_ADD_ON_DATA
 EXPORTING
 I_KUNNR = I_KUNNR
 I_BUKRS = I_BUKRS
 I_VKORG = I_VKORG
 I_VTWEG = I_VTWEG
 I_SPART = I_SPART.

 CATCH CX_BADI.
 ENDTRY.

Listing 1.3  Example of Kernel-Based BAdI Instantiation and Call

The BAdI definition name itself becomes a globally available reference type. This
paradigm has an important advantage over the classic BAdI: The ABAP compiler
can check the BAdI existence and parameters statically, so you can avoid runtime
errors related to misspelling BAdI definition names or interface incompatibility.

35

Business Add-In (BAdI) 1.3

Furthermore, unlike with the classic BAdI, the “where-used list” tool can be used
directly for kernel-based BAdI definition.

See Figure 1.11 for an example view of a kernel-based BAdI in Transaction SE18.

Figure 1.11  Kernel-Based BAdI Definition Example

Kernel-based BAdIs are an integral part of the Enhancement Framework. Each
kernel-based BAdI is assigned to an enhancement spot.

1.3.3	 Filtered BAdIs

Both the classic and kernel-based BAdI flavors can be filtered. A filter helps the
calling application choose the appropriate BAdI implementation for the current

© 2013 by Galileo Press Inc., Boston (MA)36

Enhancement Types1

data processing situation. For example, calculating tax is a highly country- or state-
dependent matter; thus, if you define a BAdI for tax calculation, it’s logical to set
a country code as a BAdI filter. The calling program is responsible for supplying
the appropriate filter value at the moment of the BAdI call. At runtime, the BAdI
framework (either classic or kernel-based) selects only those active BAdI imple-
mentations that have matching filter values in their properties.

A classic BAdI definition has a simple filter facility: A BAdI definition can be assigned
a global data element as a filter type. When implementing a filtered BAdI, you must
provide one or more filter values for which your implementation will be active.

A kernel-based BAdI has a much more sophisticated filter definition technique: The
filter value can be checked against data element fixed values (as with the classic
BAdI); alternatively, you can define a special program for checking the filter value
at runtime. When creating an implementation for a kernel-based filtered BAdI, you
can create considerably complex filter conditions with several conditions connected
with AND and OR logical operators.

1.3.4	 BAdI Subscreen and Function Codes

Both kinds of BAdIs are also capable of screen and menu function code extending.
If the BAdI is capable of extending the screen and menu codes, it will have an
additional tab with available subscreen areas (see Figure 1.12). When creating the
BAdI implementation, you will have to set your own program name and subscreen
number for each available subscreen area.

For menu function code, the implementation will contain text labels and an icon
for redefined function code. Subscreen and function code extensions actually have
nothing to do with the object-oriented paradigm. In this case, the BAdI definition
and implementation are just used as a placeholder for screen numbers and function
codes. The calling program is responsible for properly processing the provided
subscreens and defining a mechanism for processing additional subscreens and
menu codes.

Later in this book, you’ll see an example of a BAdI with a subscreen definition.

37

Business Add-In (BAdI) 1.3

Figure 1.12  Classic BAdI with Screen and Menu Enhancements

1.3.5	 Finding BAdIs

As with other enhancement tools, the Workbench Information System is always
available as a passive search method. The active method is using generic break-
points: Defining breakpoints at the CL_EXITHANDLER=>GET_INSTANCE method can
find a classic BAdI, or defining a breakpoint at a GET BADI statement can find a
kernel-based BAdI.

1.3.6	 BAdI Summary

A BAdI is the most flexible enhancement tool; compared to the BTE framework, the
latest kernel-based BAdIs have sophisticated filter mechanisms. The object-oriented
nature of the BAdI can potentially lead to more elegant decomposition when func-
tionally close application callbacks can be united into one BAdI definition. At the
same time, a BAdI isn’t capable of remote functionality (unlike BTE framework); it’s
obvious, however, that implementing a remote BAdI (which is the same as remote
object communication) can be a considerably challenging task.

© 2013 by Galileo Press Inc., Boston (MA)38

Enhancement Types1

1.4	 Implicit Enhancements

SAP introduced the implicit enhancement concept in SAP NetWeaver 7.0 together
with the new Enhancement Framework. Using this option, you can modify virtually
any standard source code without requesting a modification key. However, there
are some restrictions. For example, you can’t enhance dynpro screens and system
programs (those with Program status = “S”). Additionally, an implicit enhance-
ment can’t be implanted into an arbitrary source code place; they are allowed only
at the beginning or at the end of a programming module (function, subroutine, or
class method), class declaration sections, structure declarations, and some other
places. Despite these restrictions, you can almost completely redefine the logic of
virtually any given standard function.

Implicit enhancements should be the last resort for developers when all other options
are completely insufficient. Experienced users sometimes say that if it seems that
you need a source code modification (or implicit enhancement), this is possibly
due to lack of knowledge. On the other hand, when you invade a standard source
code, you take over the original manufacturer responsibility. You should always
think twice before altering standard code and then reconsider your options.

1.5	 Summary

In this chapter, we considered the main enhancement techniques that SAP currently
delivers with its systems. We also covered the history of enhancements from rude
modifications to the sophisticated modern Enhancement Framework. This chapter
gives you a good start before plunging into the details of Financial Accounting
enhancements. In the next chapter, we examine both the data representation and
user interface enhancement methods of accounting master data.

39

In this chapter, we examine possible ways of enhancing both the database
and user interface data of different types of Financial Accounting master
data: general ledger, Accounts Receivable, and Accounts Payable.

2	 Master Data Enhancements

The various master data enhancements in Financial Accounting are not always
simple to implement and thus require detailed explanation. As for customer and
vendor master data, these enhancements have several common features worth
discussing together, and, at the same time, they also have some specifics that should
be shown separately. First, we’ll walk through the general ledger account master
data enhancement. Then, we’ll discuss common features of vendor and customer
data enhancements, followed by a separate consideration of customer credit control
data enhancements.

2.1	 General Ledger Accounts

The task of the general ledger account master data enhancement is not common in
SAP implementations. In a way, it depends on the informal business influence of
an accounting department. The higher that influence is, the more enhancements
are required in accounting, including general ledger account master data.

It isn’t a problem to add additional fields to the general ledger account table via
the append structure and then to create some customer-specific Z transaction for
manipulating those data fields. A more interesting task is enhancing not only a
database table but also the user interface (UI) and screen layout. It requires some
tricky coding, though, and a considerable amount of time to debug standard SAP
transactions. In this section, we discuss three elements of general ledger accounts:
their main transaction codes, data enhancements of general ledger account master
data tables, and data enhancements of UIs.

© 2013 by Galileo Press Inc., Boston (MA)40

Master Data Enhancements2

2.1.1	 Main Transaction Codes for General Ledger Account
Master Data

First, let’s examine the structure of the main transaction codes for general ledger
account master data maintenance. These codes are FS00, FSP0, and FSS0. The
screen layout of all three transactions actually looks almost the same. They include
a header block with the account number and header information and a tabstrip
control below. You can see this in Figure 2.1.

Figure 2.1  Screen Layout of Transaction FS00

All three transactions call report SAPGL_ACCOUNT_MASTER_START with a
short source code. Following the program logic, you can see that the process-
ing of general ledger account master data takes place inside function module
GL_ACCT_MASTER_MAINTAIN.

41

General Ledger Accounts 2.1

Note

For compatibility reasons, SAP retains old transaction codes for general ledger master
record maintenance (FS01/FS02/FS03). They reference the SAPMF02H module pool, which
is a very old piece of code. If you open the starting screen’s layout of these transactions
in the Dialog Screen Editor, you can see that those layouts have nothing in common
with what you see in the opened transaction. The secret is that SAP actually calls new
transaction codes. For example, you can follow the logic by opening starting screen 401
of Transaction FS02, then opening PBO module TRANSAKTION_INIT, and finally opening
subroutine NEW_TRANSACTIONS.

As a reminder, you want to seamlessly integrate your own logic and screen elements
into an existing SAP transaction without modifying the standard and without any
harm to the standard logic. As you can see, the modern general ledger account
maintaining transactions use a tabstrip control to display different views of account
data. To tailor the tab to your personal needs, you must add an additional tab with
your proprietary data.

Toward the end of the source code of function module GL_ACCT_MASTER_MAINTAIN,
you can see a subroutine call with quite a promising name: SET_LAYOUT. Notice
that there is also another subroutine: SET_LAYOUT_FROM_ACCOUNT, but it’s actually a
wrapper for the first one. This is where you find some useful information. Inside
the subroutine, you can see the call to the TABSTRIP_INIT function module, which
implements an SAP customizable tabstrip control manipulating technique.

Note

Usage of function modules from the ATAB function group (such as TABSTRIP_INIT or
TABSTRIP_LAYOUT_READ) is an indication that the UI of a transaction might be enhanced.
Later, you’ll see that this technique is used in areas other than general ledger account
maintenance transactions.

2.1.2	 Data Enhancement of General Ledger Account Master
Data Tables

The two main database tables storing general ledger account information are SKA1
and SKB1. (Other general ledger account tables are not relevant to our discussion
in this section.) SKA1 contains general account data common to all company codes,
while SKB1 contains data specific for a particular company code and consequently
has company code as a part of the primary key. You might also notice that each table

© 2013 by Galileo Press Inc., Boston (MA)42

Master Data Enhancements2

has chart of accounts code (field KTOPL) as a primary key component, which means
that an account is always a part of some chart of accounts. A chart of accounts is
just a list of accounts, specific for some country and/or company code. Following
the foreign key link, you can see that a chart of accounts has its own table (T004).
In the following explanation, you will see that the chart of accounts has its impact
on the UI of general ledger account master record maintenance transactions.

Let’s suppose that you need to add some field to the SKB1 table, so you enhance
the data specific to the company code. To make the task more expressive, let’s also
suppose that the field should reference some other customizing table and should
be exposed to a user in the form of a list box element.

The next section describes the steps in this process.

Creating Domain and Data Elements

Note

Never be too rushed to create data elements for your fields with appropriate field label
texts. This practice makes the design more flexible and maintainable — if you use the
same field in ALV reports or other screens, you don’t have to rewrite field labels for
corresponding interface elements.

To plan the field to reference another table, you create a domain for the field because
the domain contains information of its value table. It’s a good practice to give the
same name to the domain and data element. In the example, the domain’s name
is ZACC_CUST_CLASS. The description of the field is “Custom Account Class.”

Note

As an alternative to a value table, you can use a list of predefined domain values. This
method is less flexible, so it should be used when you have a very stable list of values.

Now let’s create the data element in Transaction SE11.

1.	Enter “Custom Account Class” into the Short Description input field.

2.	Enter “ZACC_CUST_CLASS” into the Domain field on the Data Type tab.

3.	Open the Field Label tab, and fill in all labels as shown in Figure 2.2.

43

General Ledger Accounts 2.1

Figure 2.2  Field Labels of the ZACC_CUST_CLASS Data Element

4.	To enable change logging for the new field, check the box for Change document
in the Further Characteristics tab of the data element (see Figure 2.3).

Figure 2.3  Turn on Change Document Flag for ZACC_CUST_CLASS

5.	Reopen the Data Type tab, and double-click on the Domain field; the system
takes you into the Domain Creation dialog.

© 2013 by Galileo Press Inc., Boston (MA)44

Master Data Enhancements2

6.	In this screen, fill in the Short description field (it should remain the same
as for the data element), enter “CHAR” in the Data Type field, and enter an
appropriate length for the field into the No. Characters input field (1 is an
excellent choice; just remember that you can express fewer than 100 different
values with one character field).

7.	Open the Value Range tab, and enter “ZTACC_CUST_CLASS” into the Value
Table field at the bottom of the screen.

8.	Double-click the Value Table field to open the Database table creation
dialog.

9.	Fill in the Short description field (use the same text as for data element and
domain).

10.	Choose a delivery class. For the example, the delivery class A (Application
table—master and transaction data) is suitable enough.

Note

If you plan to use a table as a part of customizing, you should choose Delivery Class
C—Customizing table, maintenance only by cust., not SAP import. In this case, the
standard maintenance dialog for that table asks you for a transport request number every
time you make changes to the table entries.

For the domain value table, its primary key must contain only one field referencing
the domain (besides the client number field: MANDT). The field list should look
as shown on Figure 2.4. Note that you do not include any text description field
in the table.

The next mandatory step in the process of creating a table is maintaining the techni-
cal settings, which are accessible via the Technical settings toolbar button.

Here, you have to fill in two fields: Data class and Size Category. For the example,
we chose Data class APPL2 and Size Category 0.

Now you’re ready to activate the newly created objects: domain, data element,
and value table. Click the Activate button (). The pop-up dialog window with
all three inactive objects appears. Select them all, and press (Enter).

45

General Ledger Accounts 2.1

Figure 2.4  Field List for Table ZTACC_CUST_CLASS

Creating Text Tables for Domain Values

To make the interaction between the user and the interface easier, besides the code
values of the new field, you should also provide a text description of each value
by using a text table. The primary key of a text table must include a language key.
The language key is just a field referencing language table T002 as a value table
via domain definition. To follow the tradition, you can use existing data element
SPRAS for the language key field.

You create the text table with the name ZTACC_CUST_CLSTX, choose Delivery Class
A for the value table, and use “Custom Account Class” as a short description of the
table. You also set the same technical settings for the table with Data Class APPL2
and Size Category 0.

For a description text field, you also can use existing data elements such as STEXT,
LTEXT, or many others starting with BEZEI. For example, BEZEI20 would be great,
with length 20 and label “Description”.

Now you have to define the relation between the previously created value table
and the text table. To do this, you create a foreign key for the ACC_CUST_CLASS
field by clicking the foreign keys button (), while the cursor is placed over the
ACC_CUST_CLASS field.

When you define ZTACC_CUST_CLASS as a value table for the domain ZACC_CUST_
CLASS, the system asks if it should propose the default values for the foreign key.

© 2013 by Galileo Press Inc., Boston (MA)46

Master Data Enhancements2

Answer “Yes.” Now you will see the dialog window represented in Figure 2.5. To
make the table a text table, click the circle next to Key fields of a text table in
the Foreign key field group.

Figure 2.5  Defining the Text Table Foreign Key

Note

It’s a good practice to define the foreign key for all fields that reference the domain with
the value table because, in many cases, it helps when designing dialog screens and UI
elements. In our case, we also create a foreign key for the field SPRAS that accepts all
default values provided by the system.

Creating a Maintenance View for Domain Values

To make maintaining the table entries possible via Transaction SM30, you have to cre-
ate a maintenance view for your two tables. Its name will be ZVACC_CUST_CLASS.

47

General Ledger Accounts 2.1

You create the maintenance view in Transaction SE11. By default, at the beginning
of this procedure, the Table/Join Conditions tab is open.

1.	Enter the name of the view into View field, and click on the corresponding
button.

2.	After clicking the Create button, the system asks for the view category. Select
Maintenance view.

3.	Enter the short description of the view.

4.	Enter the main table name of the view: “ZTACC_CUST_CLASS”.

5.	Click the Relations button, and select the only available table ZTACC_CUST_
CLSTX. It is available here because we previously created the foreign key relation
between the two tables. Now the Table/Join Conditions tab should look like
Figure 2.6.

Figure 2.6  Join Conditions of ZVACC_CUST_CLASS Maintenance View

© 2013 by Galileo Press Inc., Boston (MA)48

Master Data Enhancements2

Next, you need to define the view fields via the View Flds tab. By default, the system
shows all of the key fields of both tables. (Note that although it is a component of
the primary key, there is no SPRAS field here because it is a language key, and the
relation between the two tables is the text table relation.)

1.	Click the Table fields button, and select the table ZTACC_CUST_CLSTX in the
pop-up window.

2.	In the next window, click the box next to the BEZEI field. The View Flds tab
now should look as shown in Figure 2.7.

Figure 2.7  Fields of the ZVACC_CUST_CLASS Maintenance View

3.	To finalize the view definition, create a table maintenance dialog by choosing
Utilities • Table Maintenance Generator.

4.	In the next screen, enter “&NC&” in the Authorization Group field and enter
“ZVACC_CUST_CLASS” into the function group.

49

General Ledger Accounts 2.1

5.	Click the one-step radio button in the Maintenance Type group, and enter “100”
in the Overview screen field.

6.	Click the Create button. After the Maintenance dialog appears, you can maintain
the view in Transaction SM30.

Maintaining Domain Values in Transaction SM30

To maintain domain values in Transaction SM30, follow these steps:

1.	In Transaction SM30, enter “ZVACC_CUST_CLASS” into the Table/View field,
and click the Maintain button.

2.	Click the New entries button, and fill in the table with arbitrary values for the
key and description. An example is shown in Figure 2.8.

Figure 2.8  ZVACC_CUST_CLASS View Contents

© 2013 by Galileo Press Inc., Boston (MA)50

Master Data Enhancements2

Now you are ready to enhance the structure of the SAP tables for the general ledger
account master record.

Enhancing the Database Table Structure

To enhance the company code specific data, you have to expand the SKB1 table. If
you are familiar with the data enhancement techniques that SAP uses, you might
know that SAP often provides customer include structures with names that start
with CI_. In the case of Table SKB1, there is no such inclusion, so we’ll use an
append structure instead.

1.	Open Table SKB1 in Transaction SE11 in display mode.

2.	Click the Append structures button. If there is no append structure for
SKB1 in your system, an information message appears, and then the system
asks for an append structure name. To comply with SAP naming conven-
tions, name the structure starting with ZA (or YA), although you can use
any name from the customer namespace. For the example, use the name is
ZASKB1_EXAMPLE.

3.	After entering this name, you are taken into the common structure definition
window. Here you define the only field with the name ZZCUST_CLASS. You
should start all additional field names with ZZ to avoid possible conflicts with
SAP fields.

4.	Don’t forget to activate the structure. After adding the append structure, table
SKB1 should look like Figure 2.9.

Enhancing the Auxiliary Structure

Unfortunately, enhancing only the SKB1 database table is not enough for the
experiment because general ledger account transactions do not operate directly
with SKA1 or SKB1 tables. Instead, they use intermediate in-memory structures
serving as a runtime data container. The structure of the container is declared by
type ACCOUNT in function group GL_ACCOUNT_MASTER_MAINTAIN. Looking into the
where-used list of the type, you can see two variables of the type: AC_NEW and
AC_OLD. AC_NEW is used for storing changed data of an edited account, and AC_OLD
keeps track of old values.

51

General Ledger Accounts 2.1

Figure 2.9  Table SKB1 Additional Fields

Another element that uses the where-used list shows the company code runtime
data of the account stored in the CCODE_DATA component of the ACCOUNT type. The
type of this component is a global dictionary structure GLACCOUNT_CCODE_DATA.
Looking into the source code of subroutine ACCOUNT_CHECK_AND_SAVE, you can see
that it calls the GL_ACCT_MASTER_SAVE function module, which actually updates all
of the database tables of the general ledger account master record. SAP uses the
MOVE-CORRESPONDING statement to move data from the GLACCOUNT_CCODE_DATA
structure into the SKB1 work area. Thus, if we enhance the GLACCOUNT_CCODE_DATA
structure with fields that have the same names as the enhancement of table SKB1,
we can successfully store the proprietary information in table SKB1.

After you’ve finished creating an append structure for database table SKB1, you can
enhance the GLACCOUNT_CCODE_DATA dictionary structure with an additional field:
ZZCUST_CLASS (see Figure 2.10).

© 2013 by Galileo Press Inc., Boston (MA)52

Master Data Enhancements2

Figure 2.10  GLACCOUNT_CCODE_DATA Additional Field

2.1.3	 Screen Layout Enhancement

Now that we’ve created all of the necessary data enhancements, it’s time to enhance
the UI of the general ledger account maintenance transaction.

In the next steps, we’ll create a subscreen, configure the layout of the SAP transac-
tion, and develop the appropriate screen flow logic.

Creating the Subscreen

Because we don’t plan to implement any sophisticated logic, the subscreen will be
simply a frame with a caption and a list box.

1.	Open Transaction SE80, and create a program of type “module pool” with name
ZGLACC_EXT. The only line of code you have to add is the TABLES definition. The
whole source code of the module pool is shown in Listing 2.1.

53

General Ledger Accounts 2.1

PROGRAM zglacc_ext.

TABLES: skb1.

Listing 2.1  Module Pool Source Code

2.	Create a screen with number 0100 inside module pool ZGLACC_EXT. Enter the
screen description into the Short Description field, and click the Subscreen
button.

3.	Open the graphical screen layout by clicking on the Layout toolbar button.

4.	Add a frame with an arbitrary caption, and create a text input field (within the
frame), referencing the SKB1-ZZCUST_CLASS table field (see Figure 2.11). To turn
the frame into a list box, double-click it, and then choose the Listbox entry in
the Dropdown list box as shown in Figure 2.12. Set the visible length of the field
to 43. After these manipulations, the layout of the screen should look just like
Figure 2.12. At this step, we do not need any flow logic for the screen.

Figure 2.11  Screen Field Properties

© 2013 by Galileo Press Inc., Boston (MA)54

Master Data Enhancements2

Figure 2.12  Screen Field Attributes for the SKB1-ZZCUST_CLASS Field

5.	Save your work, and activate both the screen and the module pool. Test the
screen separately. If you’ve thoroughly defined all of the necessary attributes
of the field, data element, and domain as explained earlier, you’ll see a list box
with a selectable entry list. The test screen should look like Figure 2.13.

55

General Ledger Accounts 2.1

Figure 2.13  Separate Screen Test Result

Creating a Custom Tabstrip Layout

Now we need to implant the subscreen into the screen layout of general ledger
account maintaining transactions. To do this, we must thoroughly investigate the
source code of various functions of function group ATAB. This function group is an
implementation of SAP internal dynamic tabstrip control, used in various master
data maintenance transactions. The key function module that contains the necessary
tables is TABSTRIP_LAYOUT_READ.

Note

ATAB’s short description reads “Tabs pages in master data,” which means that it’s a
reusable technology; in other words, after you enhance one transaction, you can do the
same with any other transaction that uses the same technique. Additionally, you can
use it in your own transactions.

You can see that the function reads data from various tables with names starting
with TAMLAY: TAMLAYA, TAMLAYB, TAMLAY1, and TAMLAY2. Using the Find
maintenance dialog button in Transaction SM30, you see that these tables can
be maintained via two view clusters: VC_TAMLAYA_00 and VC_TAMLAY_00.

Registering Subscreens

Now let’s register the subscreen in layout configuration. The first view cluster
VC_TAMLAYA_00 contains a list of subscreens used in different application areas.
The application area is a key field. Recall the function module TABSTRIP_INIT in
the general ledger account maintenance transaction, which has an input parameter
I_APPL with an actual value GL_MASTER. The list of subscreens of application area
GL_MASTER is shown in Figure 2.14.

© 2013 by Galileo Press Inc., Boston (MA)56

Master Data Enhancements2

Figure 2.14  Layout List for the GL_MASTER Application Area

You now need to insert a record denoting the new subscreen.

1.	Switch to edit mode by clicking the Toolbar button (). The system displays
two messages. The first warns that the table is client independent and that your
changes will affect all clients defined in your system. The second warns: “Do
not make any changes (SAP data).” You don’t plan to modify the SAP layout; you
just want to add your input without any changes to the standard logic. With this
information in mind, you can proceed further into edit mode.

2.	The screen shown in Figure 2.15 displays all application areas that use the same
customizable tabstrip layout technique. Select the GL_MASTER application area,
and double-click on the folder icon labeled Group Box on the left pane of the
window. You will see the list of all subscreen used by this application area.

57

General Ledger Accounts 2.1

Figure 2.15  Application Area List in the First Screen of View Cluster VC_TAMLAYA_00

3.	Click the New Entries button, and enter the following information:

EE 901 for the Group Box field (we chose the 901 value so as not to interfere
with the SAP standard key values)

EE Arbitrary description for the Group box (in the sandbox IDES [Internet Demon-
stration and Evaluation System] system, we used the word “Enhancement”)

EE ZGLACC_EXT for Program

EE 0100 for Screen number

4.	Leave all other fields of the line uninitialized, and save the entry.

Configuring Layout

Now that the subscreen is registered in the subscreen list of the GL_MASTER applica-
tion area, you need to configure the new layout of the transaction. To do this, you

© 2013 by Galileo Press Inc., Boston (MA)58

Master Data Enhancements2

open view cluster VC_TAMLAY_00 in Transaction SM34. When the system asks for
the application area, enter “GL_MASTER”.

The first screen (see Figure 2.16) of the view cluster shows available layouts for
different general ledger account transactions. You can clearly understand the layout
destination by its short description.

Figure 2.16  Standard SAP Layouts for Application Area GL_MASTER

As shown in Figure 2.16, the left pane of the view window with tree control gives
a notion of what can be customized here. First, you can define the number and
titles of tabs of the tabstrip layout, and secondly, you can organize one or more
subscreens on each tab.

59

General Ledger Accounts 2.1

Note

When implementing a dynamic tabstrip with function group ATAB, you cannot create a
tab with more than seven subscreens on it.

Due to delivery class E of this maintenance view, you can’t change the existing SAP
layouts, so you should add the new one by copying one of the existing layouts.
Because the plan is to add a subscreen with some company code specific data, it’s
logical to use layout SAP3 Standard tab layout (co.code) as a sample.

Note

If a configuration table has delivery class E, then the table contains predefined entries
delivered initially by SAP. Also, you can add your own entries within your customer
namespace (e.g., the key value must start with character Z or Y).

1.	Select layout SAP3, and click the Toolbar icon (). When the system asks if
you want to copy all depending records, choose Yes.

2.	Now you see a single line with key SAP3 and the short description. Change the
key value to any code starting with character Z or Y, enter the short description
“Enhanced tab layout (co.code)”, and press (Enter). In the IDES system, we
created the layout ZSAP.

Now let’s configure the layout so that the subscreen will occupy a separate tab.

1.	Add a tab by adding a tab description. Select the newly created layout, and
double-click the Tab page titles folder on the left pane of the window.

2.	Add a new tab number with a short description by clicking the New Entries
button (see Figure 2.17).

3.	Select the tab, and double-click the Position of groups on the tab pages folder.
You can add up to seven subscreens to the tab. The field Position controls the
order in which subscreens appear on a tab; the field Group Box is a code name
for subscreen. You can select previously registered subscreens by searching under
Help. Notice that SAP added the prefix S to the subscreen group number, so the
subscreen appears with key S0901.

© 2013 by Galileo Press Inc., Boston (MA)60

Master Data Enhancements2

Figure 2.17  Adding a Tab to the ZSAP Tabstrip Layout

All of this work is still not enough to make the custom developed subscreen appear
in a standard transaction. Another type of configuration activity has to be done in
Financial Accounting (FI). There are various ways of configuring the general ledger
account master data screen: The layout can be assigned either to a chart of accounts
or an account group. Let’s assign the layout to a whole chart of accounts by editing
an entry in the maintenance view V_T004_B. In the sandbox system, we assigned
a new layout to the INT chart of account, which should be well known to those of
you who attended SAP Financials training courses.

Now you can see the layout settings for the INT chart of accounts (see Figure 2.18).
Note that we made our ZSAP layout the default company code layout.

61

General Ledger Accounts 2.1

Figure 2.18  INT Chart of Accounts Layout Assignment

Finally, you can start Transaction FSS0—general ledger account maintenance in
company code—and see the resulting screen, which has an additional tab: Account
class (see Figure 2.19).

Figure 2.19  Enhanced Screen of General Ledger Account Master Data

Defining Screen Flow Logic

If you play with the newly added subscreen while editing any general ledger account
master data in Transaction FSS0, you’ll see that the list box is still not functional
because of the following:

© 2013 by Galileo Press Inc., Boston (MA)62

Master Data Enhancements2

EE The field value is not saved.

EE The list box behaves the same way both in edit mode and in display mode.

To make the list box work, you must open the module pool ZGLACC_EXT to do some
programming.

First, it’s important to understand that field properties function differently depend-
ing on the transaction mode. In edit or create mode, the field should be ready for
input; in display mode, it should not.

Knowing the mode in which the transaction is working is very important; unfortu-
nately, the transaction code doesn’t indicate the editing mode. And here again, you
need to dive into the source code. When you look into a couple of PBO (process
before output) modules of screens belonging to function group GL_ACCOUNT_MAS-
TER_MAINTAIN, you can see that the running transaction mode is stored in the field
activity of the global structure variable status. Also, the field activity can take
five different values (see Table 2.1).

Mode Description

1 Display Mode

2 Edit mode

3 Create mode

4 Block mode

5 Delete mode

Table 2.1  Available Modes of a General Ledger Master Data Transaction

Unfortunately, there’s no simple way of retrieving the value of the status-activity
global variable other than the dynamic assign technique.

Note

SAP does not recommend the dynamic assign technique because you can read and
even change virtually any global data of any SAP program loaded into the same session
together with your program.

63

General Ledger Accounts 2.1

Screen properties are modified in PBO modules, so you have to create the following
entry in the PROCESS BEFORE OUTPUT screen logic part of screen 0100:

 MODULE modify_screen.

Note

When implementing screen flow logic modules, avoid creating long module code
(not more than five to seven lines of code) due to the screen logic module’s strange
visibility rules: If you declare a variable inside MODULE…ENDMODULE boundaries, it
becomes global, so it keeps its value between module runs.

The resulting logic inside the modify_screen module should be as shown in Listing
2.2. Note that you access the status-activity variable using dynamic assign.

 FIELD-SYMBOLS: <activity> TYPE char1.

 ASSIGN (‘(SAPLGL_ACCOUNT_MASTER_MAINTAIN)STATUS-ACTIVITY’) TO <activity> CASTING.

 CHECK <activity> IS ASSIGNED.

 LOOP AT SCREEN.

 CASE screen-group1.

 WHEN ‘901’.

 IF <activity> CA ‘23’. “Edit or Create mode

 screen-input = ‘1’.

 ELSE.

 screen-input = ‘0’.

 ENDIF.

 WHEN OTHERS.

 CONTINUE.

 ENDCASE.

 MODIFY SCREEN.

 ENDLOOP.

Listing 2.2  Flow Logic in a PBO Module

Save and activate both the screen and the module pool, and then start Transaction
FSS0. Try switching to edit and display mode. The field CustAccClass should be
grayed in display mode and ready for input in edit mode.

The value of the field isn’t stored in the database table SKB1. To achieve this,
you must implement moving values between runtime structure AC_NEW (see the

© 2013 by Galileo Press Inc., Boston (MA)64

Master Data Enhancements2

Enhancing the Auxiliary Structure section earlier in this chapter for details on the
AC_NEW structure) of function group GL_ACCOUNT_MASTER_MAINTAIN and your own
runtime data.

As in the case of the transaction mode, here you have to use the dynamic assign
technique. Now you need to implement the logic both in PBO and PAI (process after
input) modules. The PBO logic moves actual account data from the runtime program
variable to the screen field; the PAI logic does the reverse. In this case, you need to
move the field value from the AC_NEW structure to your SKB1 table work area and
vice versa. See Listing 2.3 and Listing 2.4 for flow logic implementation.

 FIELD-SYMBOLS: <ac_new> TYPE account.

 ASSIGN (‘(SAPLGL_ACCOUNT_MASTER_MAINTAIN)AC_NEW’) TO <ac_new> CASTING.

 CHECK <ac_new> IS ASSIGNED.

 skb1-zzcust_class = <ac_new>-ccode_data-zzcust_class.

Listing 2.3  PBO Logic for SKB1 Additional Field

 FIELD-SYMBOLS: <ac_new> TYPE account.

 ASSIGN (‘(SAPLGL_ACCOUNT_MASTER_MAINTAIN)AC_NEW’) TO <ac_new> CASTING.

 CHECK <ac_new> IS ASSIGNED.

 <ac_new>-ccode_data-zzcust_class = skb1-zzcust_class.

Listing 2.4  PAI Logic for the SKB1 Additional Field

After implementing the flow logic, you activate the module pool and screen restart
Transaction FSS0 to check that the new field is successfully stored in the database
table. The SAP system registers all changes made to the field via the flag Change
Document in the ZACC_CUST_CLASS data element. You can check this by opening
the Information tab of the changed general ledger account in Transaction FSS0
and clicking the Change documents button.

65

General Ledger Accounts 2.1

2.1.4	 Other Enhancements Available in General Ledger Account
Master Data

As we already mentioned in the beginning of the chapter, it seems as though SAP
doesn’t assume there is much demand for general ledger account master data
enhancement, so the set of existing enhancements is reduced to the process of
checking data before saving.

Data Checks

To see the details of the data check exit, you can open subroutine CALL_USER_EXITS
in module pool SAPMF02H. SAP uses two types of user exits: one BTE and an older
style customer enhancement.

Each of the exits has the same set of parameters:

EE Chart of account data of type SKA1

EE Company code account data of structure SKB1

EE One-character calling mode (MODE)

EE Table parameter with line type BAPIRET2

SAP doesn’t expect any exceptions from these user exits; all of the messages should
be passed via an export table parameter return of type BAPIRET2, which is a standard
SAP container for message information. If any of the returned messages have type E,
A, or X, the saving process will be interrupted with the corresponding message.

These data check user exits are called twice in different scenarios:

EE Just after the internal checks are performed. This moment occurs when a user
performs the Check or Save command. In this case, the parameter mode contains
the value “C.”

EE Just before the database update. The mode parameter contains the value “U.”

Business Transaction Event (Open FI)

Function module OUTBOUND_CALL_00002310_E is the calling point for P&S BTE
(publish and subscribe business transaction event) modules for the event 00002310.
The event has sample function module SAMPLE_INTERFACE_00002310. To implement
the event, copy the sample function module to your own event, and implement
your logic there. To activate the event, you have to perform customizing activities
in Transaction FIBF.

© 2013 by Galileo Press Inc., Boston (MA)66

Master Data Enhancements2

Function Module Exits

The statement CALL CUSTOMER-FUNCTION ‘001’ is actually translated into the function
module EXIT_SAPMF02H_001 call. This function module is the only component of
the old-style enhancement SAPMF02H; you can examine it in Transaction SMOD.

SAP Internal BAdI

A call is also made to BAdI FI_LIMIT_ACCOUNT before saving account data and after
other checks. The BAdI definition is marked as SAP internal, so you can’t use it.
SAP uses the user exit to implement logic in additional components and industry
solutions.

Checking Texts

As you can see in Transaction FS00 on tabs Information (C/A) and Information
(CoCd), each general ledger account has two sets of texts: chart of accounts texts
and company code texts. A special user exit also exists for checking detailed texts.
This user exit is called after all other data of the general ledger account are checked
and saved and before finalizing the COMMIT. You can see the logic in subroutine
CALL_USER_EXIT_TEXTS of the SAPMF02H module pool.

To implement the text checking user exit, you must do the following:

EE Implement the logic in a subroutine (FORM) of your own program. The subroutine
must have seven parameters (for types and descriptions, see Table 2.2).

EE Make at least one entry in the customizing table TKEEXITS where you have to
set the following fields (other fields are optional):

EE EXITID = “EXT_SAPMF02H_002”: Exit identification.

EE ISACTIVE = “X”: Activation flag.

EE REPORT: Your report or module pool name.

EE FORM: Your subroutine name.

To make several entries, you can set different values in the SEQNO field.

The TKEEXITS table has no maintenance dialog, but you can maintain it directly from
Transaction SE11 via menu path Utilities • Table Contents • Create Entries.

67

General Ledger Accounts 2.1

No Name Type Description

1 ACCOUNT SAKNR Account number.

2 CHART KTOPL Chart of accounts.

3 COA_TEXT Table parameter.

See the YS_GLACCOUNT_TEXT type
definition in Listing 2.5 for the
line type of the parameter.

Chart of accounts texts.

4 CCODE BUKRS Company code.

5 CC_TEXT Table parameter.

See Listing 2.5 for the line type
definition of the parameter.

Company code texts.

6 RETURN Table of BAPIRET2 Return messages.

7 ACTIVE Activation flag. Actually the
parameter is ignored if there
are the general ledger account
maintenance transactions.

Table 2.2  Text Checking Subroutine Parameter List

 types: begin of ys_glaccount_text,
 id type tdid,
 language type spras,
 lines type tsftext,
 end of ys_glaccount_text.

Listing 2.5  The Structure of the Text Table Parameter

2.1.5	 General Ledger Summary

This section answered many questions about enhancing general ledger accounts. We
discussed the possible methods to enhance the data, screen layout, and behavior
of general ledger account master data maintenance programs.

We added our own field to a standard SAP table, created subscreens with the data,
and implanted a subscreen into a standard transaction layout. However, remember
that it does take a substantial amount of time to debug and investigate standard
SAP code.

© 2013 by Galileo Press Inc., Boston (MA)68

Master Data Enhancements2

You learned some developmental tricks that are required to make the end results
behave seamlessly. We used the dynamic assign technique to access global SAP
variables, which is generally not recommended by SAP.

We expanded the standard table with an additional field. To avoid developing our
own database table access code, we successfully relied upon SAP standard routines
and achieved field changes logging via a standard change document object.

We also examined other available user exits, including the text-checking exit.

2.2	 Accounts Payable and Accounts Receivable

Whereas enhancing general ledger master records is an infrequent task in most
projects, extending Accounts Payable (AP) and Accounts Receivable (AR) is a com-
mon task. In this section, you’ll see how AP and Accounts Receivable master records
can be enhanced. First, we discuss general information concerning both kinds of
master data, and then we’ll show the enhancement techniques in more detail for
AP and AR separately.

2.2.1	 Maintenance Transactions

There are numerous transactions in the system for maintaining customer and vendor
master records. As a rule of thumb, the four-character transaction code follows this
naming convention: the first letter can be F for Financial View, V for Sales view,
or X for Central view; the second letter can be D for Customers or K for Vendors;
and finally the last two characters can be 01 for Create, 02 for Change, and 03 for
Display. All of the resulting transactions (and some others) use the same screen
sequence management technique.

The module pool SAMF02D contains a major portion of the program logic for customer
master maintenance. SAMF02K is the main module pool for vendors.

2.2.2	 Data Enhancements

Before proceeding with data enhancements, we should review the technical struc-
ture of the customer and vendor master record. Unlike general ledger accounts,
which have a considerably smaller number of tables, customers and vendors are
represented in the system with dozens of tables, due to the rich variety of business

69

Accounts Payable and Accounts Receivable 2.2

activities they are involved in. To roughly estimate the number of tables, you can
open the Repository Information System and find all database tables with names
starting with LF (for vendors) and KN (for customers).

Note

LF derives from the German Lieferant, and KN from Kunde.

In the SAP ERP IDES system, there are 21 tables for vendors and 31 for customers.
This is a logical breakdown because customers bring revenue, so businesses should
know more about these entities. We don’t need to examine all of these database
tables; a couple of main tables are enough to illustrate the point.

EE Main vendor tables:

EE LFA1: Vendor master (general section)

EE LFB1: Vendor master (company code)

EE Main customer tables:

EE KNA1: General data in customer master

EE KNB1: Customer master (company code)

As with the general ledger accounts, we will enhance company code view tables
KNB1 and LFB1 with the same field: ZZCUST_CLASS. Using Section 2.1.2, Data
Enhancement of General Ledger Account Master Data Tables, as a sample, you can
enhance both tables by appending structures.

Note

Later in this chapter, you’ll see that the customer and vendor enhancement technique
assumes that you use your own database tables to expand master data. Such an approach
requires more development efforts because you need to program the database table
update code (insert, update, and delete). Furthermore, if you plan to employ change
documents, you have to implement change document update code.

Several industry solutions and third-party components are installed in the IDES
system, so tables LFB1 and KNB1 already have a number of append structures. In
this case, after clicking the Append Structure button in Transaction SE11, a dialog
box appears with the available append structures listed, as shown in Figure 2.20.

© 2013 by Galileo Press Inc., Boston (MA)70

Master Data Enhancements2

Figure 2.20  List of Append Structures for Table LFB1

You then click the Create Append button () and enter the append structure name
starting with Z: “ZALFB1_EXAMPLE” for LFB1 and “ZAKNB1_EXAMPLE” for KNB1.
The resulting structure of Tables LFB1 and KNB1 should look as shown on Figure
2.21 and Figure 2.22. Don’t forget to define the appropriate foreign keys.

Figure 2.21  Enhanced Table LFB1

71

Accounts Payable and Accounts Receivable 2.2

Figure 2.22  Enhanced Table KNB1

2.2.3	 Screen Layout Enhancements

Unlike the general ledger accounts, where you had to dive into the source code to
discover possible ways of UI enhancement, customer and vendor master data have
special enhancement IMG subtrees in Financial Accounting (FI). Here you can find
several nodes dealing with screen and data enhancements.

Customizing nodes can be found via the following menu path: Financial Account-
ing • Accounts Receivable and Accounts Payable. Then you can access the
subtrees:

EE For customers: Customer Accounts • Master Data • Preparations for Creat-
ing Customer Master Data • Adoption of Customer’s Own Master Data
Fields

EE For vendors: Vendor Accounts • Master Data • Preparations for Creating
Vendor Master Data • Adoption of Customer’s Own Master Data Fields

© 2013 by Galileo Press Inc., Boston (MA)72

Master Data Enhancements2

Note

At first glance, the screen layout of customer master maintenance transactions such as
XD02 or XD03 look very similar to that of general ledger account maintenance. Also,
if you place a breakpoint into the TABSTRIP_LAYOUT_READ function module and open
Transaction XD03, you’ll see the debugger stopping at the function start. Unfortunately,
you can’t employ the same technique as you did for the general ledger account screen
layout enhancement here because customer maintenance transactions use a single default
tabstrip layout named SAP. This layout cannot be changed due to the delivery class of
the customizing tables.

Settings and explanations of these two IMG subtrees look very similar although,
in reality, vendor and customer transaction layouts are different.

Examining both IMG subtrees shows that SAP provides two BAdI definitions for
the customer master (CUSTOMER_ADD_DATA and CUSTOMER_ADD_DATA_CS) and two
definitions for the vendor master (VENDOR_ADD_DATA and VENDOR_ADD_DATA_CS).
This is done to separate program logic dealing with screens (the CS suffix stands
for customer screen) from the logic working “silently” without screen interaction.
Also note that the CS-suffixed definition is filter dependent, and the filter value is
the code of the customer screen group (see Section 2.3.2, Define Tabstrip Layout
[Customer Screen Group]).

2.3	 Accounts Receivable (Customers)

First, let’s consider enhancement techniques for AR (or customer) master records.
In this section, we’ll create our own subscreen with its logic, configure our special
screen layout to implant into the standard transaction, and look at data manipulat-
ing techniques using the available user exits.

2.3.1	 Define Your Own Subscreen

First, let’s design our own subscreen, which will be displayed in a customized view.
Earlier, we created a special module pool for general ledger account master data
enhancement, so it’s logical to reuse it for the customer master record.

First, you need to declare the global data structures to be used for onscreen fields.
Here you can use the TABLES statement:

TABLES: knb1, *knb1.

73

Accounts Receivable (Customers) 2.3

Note

*KNB1 notation defines a table work area with the structure of database table KNB1. In
earlier SAP code work, areas with asterisk prefixes were traditionally used as runtime
storage for the data before editing, while the work area without asterisk prefixes held
edited data.

You can create a subscreen with a single list box inside a frame, as you did ear-
lier in Section 2.1.3, Screen Layout Enhancement. The resulting screen layout
should look like Figure 2.23. Note that the list box references global field KNB1-
ZZCUST_CLASS.

Figure 2.23  Screen Layout in Design Time

© 2013 by Galileo Press Inc., Boston (MA)74

Master Data Enhancements2

2.3.2	 Define Tabstrip Layout (Customer Screen Group)

Now you have to define customer screen groups in the SAP configuration utility
IMG, which is accessible through Transaction SPRO. A screen group is just a grouping
code for one or more screen tabs, which then are placed together into a standard
SAP screen. See the starting IMG node for customer screen layout enhancements
in Figure 2.24.

Figure 2.24  IMG Starting Node for Customer Screen Layout Enhancements

The IMG node is just another well-known view cluster maintenance dialog, and
you should not experience any difficulties with its data manipulating.

As you can see in Figure 2.25, we added screen group Z0. Now you must define
one or more tabs for a custom-defined screen group. To do this, select the newly

75

Accounts Receivable (Customers) 2.3

defined screen group Z0, and double-click on the Label Tab Pages folder in the
left pane of the window.

Figure 2.25  Newly Added Customer Screen Group (Z0)

On the next screen, you define two tabs with the names First Tab and Second Tab.
Note that you can supply each tab with an icon name; the screen field has a search
function attached that lets you select the most applicable icon. You select here the
ICON_ENHANCED_BO and ICON_ENHANCED_BO_UPTODATE icons. Also, you
have to provide a unique function code for each created tab; function codes are
then used to distinguish the tab selected by the user. Here you use Z0TAB1 and
Z0TAB2 codes (Figure 2.26).

© 2013 by Galileo Press Inc., Boston (MA)76

Master Data Enhancements2

Figure 2.26  Tabs Definition Screen

2.3.3	 Activating a Screen Group via a BAdI Implementation

If you start one of the customer master data maintenance transactions immediately
after creating the screen group with tabs, you won’t be able to see any of the
changes.

To make the group appear on the screen, you have to implement additional pro-
gramming; namely, you employ a BAdI CUST_ADD_DATA.

1.	Open IMG node Business Add-In: Processing of Master Data Enhancements.
If the BAdI already has implementations in your system, you are prompted with
a list of the BAdI implementations.

77

Accounts Receivable (Customers) 2.3

2.	Click the New button, which takes you to the dialog box asking for the new
BAdI implementation name (see Figure 2.27).

Figure 2.27  BAdI Implementation Name Dialog Box

3.	Enter an arbitrary name starting with Z or Y, and click OK (see Figure 2.27).
In the IDES system, we have created an implementation with the name
ZACC_ENH_EXAMPLE.

Now you can implement the CHECK_ADD_ON_ACTIVE method, which will be called
while initializing the screen layout of the customer master data maintenance
transaction. Its only task is to inform the runtime environment that the screen
layout enhancement is active. The single input parameter I_SCREEN_GROUP contains
the group name that we have already defined (Z0), while the output parameter
E_ADD_ON_ACTIVE must contain “X” if the screen group is active. The source code
of the method is quite simple, as shown in Listing 2.6.

METHOD if_ex_customer_add_data~check_add_on_active.
 IF i_screen_group = ‘Z0’.
 e_add_on_active = ‘X’.
 ENDIF.
ENDMETHOD.

Listing 2.6  CHECK_ADD_ON_ACTIVE Method Implementation

After activating the BAdI implementation, you can start the customer transaction
again and see that an additional button has appeared on the toolbar (see Figure
2.28). Note that the button is titled according to the Z0 subscreen group name.

Also note that a new line appeared in the window menu at Goto • Enhancements.
If you click the button Additional Data (ENH) (or choose Goto • Enhancements •
Additional data [ENH]), you will see the customized view as shown in Figure
2.29.

© 2013 by Galileo Press Inc., Boston (MA)78

Master Data Enhancements2

Figure 2.28  New Toolbar Button Displayed on the Customer Master Data Screen

Figure 2.29  Enhanced Customer Master Screen Area

79

Accounts Receivable (Customers) 2.3

You can see the tabs we defined previously in the customizing view cluster with
the correct title and the new icon. However, you can still see that both tab screens
are empty, and also that the header part of the screen above the tabstrip doesn’t
contain any company code data (remember that we enhanced the company code
data of a customer).

2.3.4	 Linking Your Own Subscreen

The remedy for these issues is another BAdI implementation. Now you open IMG
node Business Add-In: Customer Subscreens. Here you make an implementation
of the CUSTOMER_ADD_DATA_CS BAdI definition.

As in the previous step, you’ll see a dialog request for the BAdI implementation
name (see Figure 2.30). Here you use implementation name ZACC_ENH_EXAMPLE_CS.
As the definition is filtered by screen group code, you supply a Z0 as the filter value
for the ZACC_ENH_EXAMPLE_CS implementation.

Figure 2.30  BAdI Implementation Name Dialog Box

The BAdI has a number of methods in its interface, but for now you just need to
implement one method: GET_TAXI_SCREEN. The system calls this method when initial-
izing the screen layout. In the method implementation, you tell the system which
screen you want to be displayed and also which view of the customer (company
code, sales, or general) the screen is attached to.

The GET_TAXI_SCREEN method has three changing parameters to assign values to:

EE E_SCREEN	
In this parameter, you assign the screen number that will be displayed on a
customized tab.

© 2013 by Galileo Press Inc., Boston (MA)80

Master Data Enhancements2

EE E_PROGRAM	
This parameter is the name of a program that the subscreen belongs to.

EE E_HEADERSCREEN_LAYOUT	
This parameter defines the view of the customer master record, and it can accept
three different values:

EE “B”: For company code view.

EE “V”: For sales view.

EE “ ” (space): For general view.

This method also has an import parameter, I_TAXI_FCODE, which contains a function
code of the tab, so you can distinguish which one of the two tabs is selected. Let’s
suppose that you implant the previously defined subscreen 200 onto First tab; its
corresponding function code is Z0TAB1.

Now that you know what the system expects from the method, you can implement
it correctly as shown in Listing 2.7.

METHOD if_ex_customer_add_data_cs~get_taxi_screen.
 e_headerscreen_layout = ‘B’.
 CASE i_taxi_fcode.
 WHEN ‘Z0TAB1’.
 e_screen = ‘0200’.
 e_program = ‘ZGLACC_EXT’.
 WHEN ‘Z0TAB2’.
 WHEN OTHERS.
 ENDCASE.
ENDMETHOD.

Listing 2.7  GET_TAXI_SCREEN Method Implementation

After activating the method, you can reopen Transaction XD03 (or any other
customer maintenance transaction), click the additional button, and see the previ-
ously developed subscreen on the first tab while the second remains empty (see
Figure 2.31).

81

Accounts Receivable (Customers) 2.3

Figure 2.31  The Subscreen Layout After Activating the GET_TAXI_SCREEN Method

2.3.5	 Making the Screen Field Transaction Mode Aware and
Updatable

The newly added screen still is not fully functional because it doesn’t distinguish
the edit/display mode, and data is not actually saved to the KNB1 table. To make
the screen field aware of the current transaction mode (edit or display), you have
to implement another BAdI method: SET_DATA of the CUSTOMER_ADD_DATA_CS BAdI
definition. The method is called before displaying the enhanced layout and is used
to transfer data from the standard transaction to the enhanced view.

You implement the method in the same BAdI implementation named ZACC_ENH_
EXAMPLE_CS. The SET_DATA method has I_ACTIVITY import parameter, which contains
the current mode of the running transaction. The list of possible values of the
parameter I_ACTIVITY is as follows:

EE “A”: Display mode.

EE “V”: Edit mode.

EE “H”: Create mode.

There is also an S_KNB1 import parameter containing runtime data of the customer
company code data. You need this parameter to initialize the internal runtime
data.

© 2013 by Galileo Press Inc., Boston (MA)82

Master Data Enhancements2

Because we use the ZGLACC_EXT module pool for manipulating additional data, it’s
a good idea to implement all of the main logic in this module. So, in the method
implementation, you just call the external subroutine from ZGLACC_EXT as shown
in Listing 2.8.

METHOD if_ex_customer_add_data_cs~set_data.

 PERFORM set_knb1 IN PROGRAM zglacc_ext

 USING i_activity

 s_knb1.

ENDMETHOD.

Listing 2.8  SET_DATA Method Source Code

In the same way, we implement another method—GET_DATA—to transfer data from
the enhanced view back to the standard transaction (see Listing 2.9).

METHOD if_ex_customer_add_data_cs~get_data.
 PERFORM get_knb1 IN PROGRAM zglacc_ext CHANGING s_knb1.
ENDMETHOD.

Listing 2.9  GET_DATA Method Source Code

Finally, to tell the system that the data has been changed, you must implement
method CHECK_DATA_CHANGED from another BAdI definition: CUSTOMER_ADD_DATA.
The method has a single parameter, E_CHANGED, which tells the system if the data
has been changed during the runtime. As in previous cases, we use an external
subroutine call (see Listing 2.10).

METHOD if_ex_customer_add_data~check_data_changed.
 PERFORM check_knb1_changed IN PROGRAM zglacc_ext CHANGING e_changed.
ENDMETHOD.

Listing 2.10  CHECK_DATA_CHANGED Method Source Code

We are still not finished programming because we need to implement all of the
declared logic in the module pool ZGLACC_EXT. We need a global variable for the
current transaction mode (edit/display), as well as some PBO logic to turn the field
editability on and off.

83

Accounts Receivable (Customers) 2.3

See Listing 2.11 for the full source code of logic for manipulating KNB1 data.

TABLES: knb1, *knb1.

DATA: BEGIN OF gs_knb1,
 loaded TYPE flag,
 aktyp TYPE aktyp,
 END OF gs_knb1.

* MODULE status_0200 OUTPUT

*

MODULE status_0200 OUTPUT.
 PERFORM status_0200.
ENDMODULE. “status_0200 OUTPUT

&--
*& Form status_0200
&--
* text

FORM status_0200 .
 LOOP AT SCREEN.
 IF gs_knb1-aktyp = ‘A’. “Display
 screen-input = ‘0’.
 ELSE.
 screen-input = ‘1’.
 ENDIF.
 MODIFY SCREEN.
 ENDLOOP.
ENDFORM. “ STATUS_0200

&--
*& Form check_knb1_changed
&--
* text

* -->P_CHANGED text

© 2013 by Galileo Press Inc., Boston (MA)84

Master Data Enhancements2

FORM check_knb1_changed CHANGING p_changed.
* Compare old and new value of zzcust_class field
 IF knb1-zzcust_class NE *knb1-zzcust_class.
 p_changed = ‘X’.
 ENDIF.
ENDFORM. “

&--
*& Form set_knb1_aktyp
&--
* text

* -->VALUE(P_ACTIVITY) text

FORM set_knb1 USING value(p_activity)
 value(p_knb1) TYPE knb1.
 gs_knb1-aktyp = p_activity.
 IF gs_knb1-loaded IS INITIAL .
* Initialize *KNB1 the very first time only
 *knb1 = p_knb1.
 gs_knb1-loaded = ‘X’.
 ENDIF.

 knb1 = p_knb1.
ENDFORM. “set_knb1_aktyp
&--
*& Form GET_KNB1
&--
* text

* <--P_S_KNB1 text

FORM get_knb1 CHANGING ch_knb1 TYPE knb1.
 ch_knb1 = knb1.
ENDFORM. “ GET_KNB1

Listing 2.11  KNB1 Enhancement Logic Implementation in Module Pool ZGLACC_EXT

2.3.6	 Calling Moments of BAdI Methods

There are more methods within the BAdI definitions CUSTOMER_ADD_DATA and
CUSTOMER_ADD_DATA_CS than we have examined so far, and it’s useful to know

85

Accounts Receivable (Customers) 2.3

when those are called. We’ll explore several of these methods in the following
subsections.

Initialization

Before displaying the first screen of the customer master maintenance transactions,
the following methods of the BAdI definition CUSTOMER_ADD_DATA are called:

EE CHECK_ADD_ON_ACTIVE	
This method tells the system that a particular screen group is implemented.

EE INITIALIZE_ADD_ON_DATA	
This method is the initialization point for the BAdI implementation; be aware
that at the moment of call, the user hasn’t entered any data.

The First Screen PAI

After the user has entered values on the first visible transaction screen, the system
calls one of the following methods of the BAdI definition CUSTOMER_ADD_DATA:

EE SET_USER_INPUTS

This method transfers all of the values entered on the first screen to the enhance-
ment: customer number, organizational units (company code, sales organization,
etc.). This method is called only in creation mode; thus, the customer number
can be blank (for internal numbering).

EE READ_ADD_ON_DATA 	
Inside this method, you should select all additional tables (if any) depending on
user inputs; this method is called only in display or change mode.

PBO Logic in the Tabstrip

In create or change mode, one of two CUSTOMER_ADD_DATA BAdI methods is called
while processing PBO logic of all tabstrip subscreens:

EE PRESET_VALUES_CCODE	
This method is called for company code data screens.

EE PRESET_VALUES_SAREA	
This method is called for sales area data screens.

© 2013 by Galileo Press Inc., Boston (MA)86

Master Data Enhancements2

Both methods should primarily be used in create mode to fill in default values in
the corresponding structures: KNB1 for company code data, and KNVV for sales
area data.

For a particular enhanced screen tab, a set of CUSTOMER_ADD_DATA_CS BAdI methods
is called:

EE SUPPRESS_TAXI_TABSTRIPS

This method hides unnecessary tabs depending on the customer number and
its organizational assignment (company code, sales area, etc.).

EE SET_DATA

This method transfers current customer data to the logic.

EE GET_TAXI_SCREEN

This method tells the system the own screen number for each enhanced tab.

PAI Logic in the Tabstrip

When a user executes a command by clicking a toolbar button or selecting a menu
command, the system allows the user interaction to be intercepted while displaying
the enhanced screen by calling the SET_FCODE method of the CUSTOMER_ADD_DATA_CS
definition.

The system also calls method GET_DATA, which we used in our earlier example, to
transfer data from the enhancement implementation to the standard program.

Saving Data

When the user finally clicks the Save button, another chain of BAdI methods of
the CUSTOMER_ADD_DATA definition is called:

EE CHECK_ALL_DATA

This method checks the data, as its name indicates. Note that if the program is in
creation mode with internal numbering, the customer number is still undefined
at the moment of call.

EE CHECK_DATA_CHANGED

This method tells the system that some data was changed, so it should update
the database tables.

87

Accounts Receivable (Customers) 2.3

In creation mode, either method CHECK_ACCOUNT_NUMBER or method MODIFY_
ACCOUNT_NUMBER will be called. The former allows checking the customer number
in case of external numbering; the latter allows customer number modification
after its assignment via an internal numbering technique.

EE SAVE_DATA	
This method is called only if data was changed; the assumption is that all the
additional tables will be saved inside the method.

Note

If you plan to implement your own change tracking via change documents, SAVE_DATA is
the right place to insert system-generated includes for manipulating changes.

Changes Report

When a user opens a changes report for a particular customer via menu path Envi-
ronment • Account changes, the system calls two BAdI methods that allow the
user to tailor his own change document objects to the standard output:

EE GET_CHANGEDOCS_FOR_OWN_TABLES

This method is called to transfer all additional change document object
names.

EE BUILD_TEXT_FOR_CHANGE_DETAIL

This method allows you to create your own explanatory text for a particular
change item.

2.3.7	 GUI Status Enhancement with Open FI (BTE)

Two BTEs can be used to make a slight alteration of the UI. If you open one of the
GUI statuses of module pool SAPMF02D—700A or 700V—you notice a function code
OPFI, based on the dynamic function text OFIWA-FTEXT (see Figure 2.32).

© 2013 by Galileo Press Inc., Boston (MA)88

Master Data Enhancements2

Figure 2.32  Status 700A of Module Pool SAPMF02D

This function code won’t be visible and active unless you implement these two
BTEs:

EE 00001330	
This event is called in the PBO logic of the starting transaction screen (see PBO
module TRANSAKTIONS_INIT of module pool SAPMF02D). It allows transferring
custom-defined function code text. If more than one function module is sub-
scribed to the event, the OPFI function code shows the default text Additional
Components as shown in Figure 2.33.

89

Accounts Receivable (Customers) 2.3

Figure 2.33  Additional Component Button in the Standard Toolbar of Transaction FD03

EE 00001310

This event implements the reaction to function code OPFI. If more than one
function is subscribed to that event, the system first shows a standard search
help dialog for selecting a particular subscriber. For example, in the IDES system,
we have defined two partner P&S modules for event 00001310, so after clicking
the Additional component button, the system pops up the dialog box shown
in Figure 2.34.

Note

If you defined your BTE enhancement as a partner add-on, then you don’t need
to subscribe a function module to event 00001330 because the system can obtain
function code texts from the 00001310 event subscription.

© 2013 by Galileo Press Inc., Boston (MA)90

Master Data Enhancements2

Figure 2.34  BTE Enhancement Selection Box

Event 00001310 knows that your P&S function module can return the modification
flag (using export parameter E_XCHNG) just like the method CHECK_DATA_CHANGED of
the CUSTOMER_ADD_DATA BAdI.

In the next subsection, we briefly discuss other BTEs you can use to implement
additional data saving.

2.3.8	 Other Open FI (BTE) Events

Besides the BAdI definitions we discussed earlier, there are also a number of BTE
calls in the customer master maintenance logic as described in Table 2.3.

Event Number Calling Moment

00001360 Called in the PAI logic of the starting transaction screen after
a user has entered transaction parameters (customer number,
company code, etc.). The event can be used to implement
additional authorization checks. This event is called in all
transaction modes; while others can only be called in create and
edit modes.

00001350 Called in the PAI logic of virtually all tabstrip screens in create
or edit mode. This event allows for example change visibility of
screen fields.

00001340 Called for in the final checks before saving (customer number can
be undefined for internal numbering).

00001320 Called after the customer data has been updated and before calling
the SAVE_DATA method of the CUSTOMER_ADD_DATA BAdI.

Table 2.3  Customer Master BTEs

91

Customer Credit Management Data and Screen Enhancement 2.4

Event Number Calling Moment

00001321 Called after the customer data has been updated and after calling
the SAVE_DATA method of the CUSTOMER_ADD_DATA BAdI, and after
the customer change documents update.

Table 2.3  Customer Master BTEs (Cont.)

2.3.9	 Function Module Exits

In addition to Open FI events, customer master logic contains a single customer
function 001 of an old-fashioned enhancement SAPMF02D. The corresponding func-
tion module EXIT_SAPMF02D_001 is called before saving customer data, just after
BTE 00001340.

The function module interface includes the full pack of the customer data, so the
interface can be used. The function module doesn’t include any exceptions, so you
need to create an error or warning message directly if your logic encounters an
error in the supplied data.

2.4	 Customer Credit Management Data and Screen
Enhancement

Customer credit control is an essential part of general AR functionality; however,
credit control has its own subset of database tables for master data, specific orga-
nizational data, and separate master data maintenance transactions.

Note

Generally credit control helps track down customers’ behavior and make decisions
concerning customers’ debts.

The enhancement technique of customer credit control data and the UI has its own
specifics, so we decided to separate the exposition into this section. In this section,
we will discuss methods of enhancements of credit control data and the screen
layout of the main credit control transactions: FD32 and FD33.

© 2013 by Galileo Press Inc., Boston (MA)92

Master Data Enhancements2

2.4.1	 GUI Status Enhancement

As in other customer master maintenance transactions, statuses of Transactions
FD32/FD33 have one additional function code OPFI referencing the dynamic field
OFIWA-FTEXT (see Figure 2.35).

Figure 2.35  Additional Function Code in the GUI Status of the Module Pool SAPMF02C

Similar to Section 2.3.7, GUI Status Enhancement with Open FI (BTE), you can use
BTEs here to implement GUI status enhancement:

EE 00001550 is used to obtain function code text that will be displayed in the toolbar
and menu.

EE 00001510 is called as a reaction to clicking an additional toolbar button or selecting
an extra menu item. Just like in general customer maintenance transactions, you
can subscribe more than one function module to this event, and, in this case,
the system pops up a dialog box from which the user can choose a particular
enhancement.

93

Customer Credit Management Data and Screen Enhancement 2.4

2.4.2	 Data Enhancement

Customer credit management data are stored in database table KNKK. In addition to
the customer number, the table has also the credit control area code as an additional
key field. As with all the other standard tables we have enhanced earlier, we can
enhance KNKK with an append structure and use as an example the same familiar
field ZZCUST_CLASS.

After adding the append structure (don’t forget to define a default foreign key for
a new field), the table should look like Figure 2.36.

Figure 2.36  Enhanced Table KNKK

2.4.3	 Status Screen Enhancement

Customer credit management Transactions FD32/FD33 have several views, but
only one of them has screen enhancement capability. If you open the flow logic of
screen 0210 of module pool SAPMF02C, you can see that there are many dynamic
subscreen calls. Also note that external subscreen numbers and program names
are obtained from global structure RF61B. Later, you’ll see how you can use this
information.

© 2013 by Galileo Press Inc., Boston (MA)94

Master Data Enhancements2

If your data enhancement is reduced to the append structure of table KNKK, the
program logic is very simple and compact.

Let’s begin by creating our own subscreen. First, you create module pool
ZKNKKENH.

Note

You can’t use the previously created module pool ZGLACC_EXT because this particular
enhancement technique has technical restrictions for module pool name length. The
technique is probably old enough to accept only program names with length less or equal
to eight characters. This might be an indication that the technique was first introduced
in SAP R/3 version 3.X, where all program names could not exceed eight characters in
length.

First, you create a simple subscreen that has only one input field in the form of a
list box, which references newly added field KNKK-ZZCUST_CLASS. In designtime,
the screen should look like Figure 2.37.

Figure 2.37  New Subscreen for Customer Credit Management Data

95

Customer Credit Management Data and Screen Enhancement 2.4

Its flow logic should be quite simple as shown in Listing 2.12.

PROCESS BEFORE OUTPUT.
 MODULE status_0300.

PROCESS AFTER INPUT.
* MODULE USER_COMMAND_0200.

Listing 2.12  Flow Logic of the Custom Defined Subscreen

As you can see, you don’t even need a PAI module (you’ll find out why later).

Now let’s implement all of the necessary logic in the module pool source code. In
full, it should look like Listing 2.13.

* Credit Control Data Enhancement
TABLES: knkk, t020.
--
* MODULE status_0300 OUTPUT
--
*
--
MODULE status_0300 OUTPUT.
 PERFORM modify_screen_0300.
ENDMODULE. “status_0300 OUTPUT

&---
*& Form modify_screen_0300
&---
* text
--
FORM modify_screen_0300.
 LOOP AT SCREEN.
 IF t020-aktyp = ‘A’.
 screen-input = ‘0’.
 ELSE.
 screen-input = ‘1’.
 ENDIF.
 MODIFY SCREEN.
 ENDLOOP.
ENDFORM. “modify_screen_0300

Listing 2.13  The Source Code of Customer Credit Management Enhancement Logic

© 2013 by Galileo Press Inc., Boston (MA)96

Master Data Enhancements2

Note that we declared two table work areas: KNKK and T020. The former contains
customer credit management data; the latter contains current transaction properties.
Thanks to ABAP memory management, these work areas will be shared with the
caller program when the subscreen is called. This ensures that we don’t need any
special code to transfer data to and from standard programs.

Note

Remember that sharing work areas declared with a TABLES statement is not possible for
function groups. See further details in ABAP system help.

Now that you have created and activated the subscreen and program logic, you
can dive into additional customizing to make your screen appear in standard
transactions.

2.4.4	 Defining and Activating Partner Products in Transaction FIBF

To define and activate partner products in Transaction FIBF, follow these steps:

1.	Open Transaction FIBF. Select Settings • Identification • Partner.

2.	Add a new record with the Partner name “ZFIENH” and Name of Area “FI
Enhancements.”

3.	Tick the Active flag.

4.	Save the entries.

5.	Select Settings • Products • ..of a Partner • Edit.

6.	Add a new record with the following field values:

EE Product: “KNKK”

EE Partner: “ZFIENH”

EE Product Description: “Customer OPFI enhancement”

7.	Select Settings • Products • ..of a Partner • Activate.

8.	Add the record with the newly created product and partner.

Note

As with the program name, product and partner names cannot exceed six characters.

97

Customer Credit Management Data and Screen Enhancement 2.4

2.4.5	 Setting External Partner Functions

To set external partner functions, follow these steps:

1.	After creating partner and product names, open the customizing table T061S in
Transaction SM30. Before opening the table data for maintenance, the system
shows this warning: “Do not make any changes (SAP data).” However, ignore
this warning and proceed with editing.

2.	Add an entry as shown in Figure 2.38.

Figure 2.38  Details of Table T061S Entry

3.	Use the field values as shown in Table 2.4.

Field Value

Program SAMF02C

Number 90

Table 2.4  T061S Table Entry

© 2013 by Galileo Press Inc., Boston (MA)98

Master Data Enhancements2

Field Value

Partners ZFIENH

Product KNKK

P Module Pool ZKNKKENH

Partner screen 0300

Table 2.4  T061S Table Entry (Cont.)

4.	Keep all other fields blank for now.

5.	Save this entry, and open Transaction FD32 or FD33 with ticked Status check-
box to see that the subscreen appears below the main screen. See the resulting
screen in Figure 2.39.

Figure 2.39  Credit Management Status View with an Additional Subscreen

99

Customer Credit Management Data and Screen Enhancement 2.4

Note

Fields Partners and Product of table T061S have lengths of six characters, and field
P Module Pool has a length of eight. This illustrates the technical restrictions for
component names.

Number 90 is used in an effort not to interfere with possible SAP entries, keeping in
mind threatening system warnings; later, you’ll see how this number can be used in
further enhancements.

Also note that the screen is fully functional; the value of the field ZZCUST_CLASS is
saved and reported in change documents.

2.4.6	 Further GUI Status Enhancement with Table T061V

If you open Table T061S in Transaction SE11, you’ll notice the field FUNCP with a
promising description: “FI-ARI: Partner function module name.” The system uses
it as a handler for additional function codes, which appear in GUI status after you
properly customize the function texts in Table T061V (FI-ARI: Texts for external
partner functions).

As most text tables do, T061V contains language code as a primary key compo-
nent and also contains sequential numbers that must correspond to that of Table
T061S.

Table T061V also belongs to SAP, just like Table T061S, and in the IDES system, it
contains dozens of entries. However, those entries don’t use sequential numbers
greater than 3. That’s why we used sequential number 90 in the Table T061S entry
to minimize the possibility of interfering with SAP components.

Let’s add an entry to the table for the English language (see Table 2.5).

Field Value

Language key EN

Program SAPMF02C

Number 90

Name Command Enhancement

Table 2.5  T061V Table Entry

© 2013 by Galileo Press Inc., Boston (MA)100

Master Data Enhancements2

Field Value

Partners ZFIENH

Product KNKK

Table 2.5  T061V Table Entry (Cont.)

Now let’s implement a function module to assign to the T061S table entry. Its
interface must be the same as in Listing 2.14.

*”--
””Local Interface:
*” IMPORTING
*” VALUE(ADDRESS) TYPE RF61H
*” REFERENCE(IKNKK) TYPE KNKK
*” VALUE(PARTY) TYPE TBE12-PARTY
*” VALUE(PRDKT) TYPE TBE22-PRDKT
*” VALUE(LANGU) TYPE SY-LANGU DEFAULT SY-LANGU
*” EXPORTING
*” REFERENCE(EKNKK) TYPE KNKK
*” VALUE(TDID) TYPE TTXID-TDID
*” VALUE(RCODE) TYPE RF61B-RCODE
*” VALUE(RTEXT) TYPE RF61B-RTEXT
*” TABLES
*” TEXTLINES STRUCTURE RF61T
*”--

Listing 2.14  FI-ARI Function Module Interface for Customer Credit Control Data

The function module can change the contents of Table KNKK: We see exporting
parameter EKNKK and also can provide an additional detailed text line supplying
text identification via TDID and text lines via the TEXTLINES table parameter.

Note

Make sure you declare IKNKK and EKNKK parameters passing by reference; otherwise, you
have to insert at least one assignment statement EKNKK = IKNKK into your function module.
If you don’t, you are at risk of data damage—the source structure will be cleared with
uninitialized export parameter EKNKK.

101

Customer Credit Management Data and Screen Enhancement 2.4

RCODE and RTEXT act as return codes of the function. If it returns any value in either
RCODE or RTEXT, the system does not update runtime data in Table KNKK after the
call of the subscribed function module. See the details in the ECNN_OKCODE subroutine
of the SAPMF02C module pool. In the IDES system, we create a sample function
module Z_SAMPLE_T061S_FUNC and put its name into the field Partner module of
the T061S table entry (see Figure 2.40).

Figure 2.40  T061S Table Entry with Partner Function Module for the Customer Credit Control

After activating the function module and saving all necessary data into T061S and
T061V tables, you can test Transactions FD32/FD33.

The menu Information has a submenu with the single entry Command Enhance-
ment. This function code is active only in status view together with the subscreen,
which was added earlier (see Figure 2.41).

© 2013 by Galileo Press Inc., Boston (MA)102

Master Data Enhancements2

Figure 2.41  Additional Menu Item in Credit Management Status View

2.4.7	 Additional Credit Management Data User Exits

If your enhancement is more sophisticated (involving additional database tables
update), you have to use BTE 00001520. Subscribed functions of the event will only
be called if event subscription 00001510 returns a Changed flag.

2.5	 Accounts Payable (Vendors)

Now that we’ve discussed AR master record enhancement, it’s a good time to turn
to its counterpart: Accounts Payable (i.e., vendors). The architecture of vendor

103

Accounts Payable (Vendors) 2.5

master enhancements looks almost the same as that of customer master enhance-
ments. The obvious difference is that vendor maintenance transactions don’t use
tabstrip control; toolbar buttons () are used to navigate a screen group. In
the following subsections, we briefly review the main differences between the
two techniques.

2.5.1	 Screen and GUI Status Enhancement with Function Group FARI

Vendor master enhancements include the same technique as customer credit man-
agement, which is built on function group FARI and customizing tables T061S and
T061V. Here, you can use the function group to add your own subscreen to the
general control data screen of the vendor master.

You can also supply the function module name in the Table T061S entry, but the
interface of the function will look different (see Listing 2.15).

*”--
””Local Interface:
*” IMPORTING
*” VALUE(ADDRESS) TYPE RF61H_K
*” REFERENCE(ILFA1) TYPE LFA1
*” VALUE(PARTY) TYPE TBE12-PARTY
*” VALUE(PRDKT) TYPE TBE22-PRDKT
*” VALUE(LANGU) TYPE SY-LANGU DEFAULT SY-LANGU
*” EXPORTING
*” REFERENCE(ELFA1) TYPE LFA1
*” VALUE(TDID) TYPE TTXID-TDID
*” VALUE(RCODE) TYPE RF61B-RCODE
*” VALUE(RTEXT) TYPE RF61B-RTEXT
*” TABLES
*” TEXTLINES STRUCTURE RF61T
*”--

Listing 2.15  T061S Partner Function Interface for Vendors

Using the same steps as stated in Section 2.4, Customer Credit Management Data
and Screen Enhancement, you can add a subscreen and additional menu entries
to the vendor general control data screen. You can also use reduced program logic
thanks to the TABLES declaration sharing.

To make the similar enhancement to the vendor master data in the IDES system,
follow these steps:

© 2013 by Galileo Press Inc., Boston (MA)104

Master Data Enhancements2

1.	Append Table LFA1 with the single field ZZCUST_CLASS.

2.	Create module pool ZLFB1ENH with screen 300 by copying the previously created
module pools (see Section 2.4).

3.	Create function module Z_SAMPLE_T061S_FUNC_K with the required interface.

4.	Use the necessary entries in Tables T061S and T061V.

5.	Enhance the general control screen of the vendor master as shown in Figure
2.42.

Figure 2.42  Enhanced Vendor General Data Screen with Additional Subscreen and Menu Entry

105

Accounts Payable (Vendors) 2.5

The corresponding table entries in T061S and T061V customizing tables are shown
in Table 2.6 and Table 2.7.

Field Value

Program SAPMF02K

Number 90

Partners ZFIENH

Product KNKK

Partner module Z_SAMPLE_T061S_FUNC_K

P module pool ZLFB1ENH

Partner screen 0300

Table 2.6  T061S Table Entry for Vendor Control Data

Field Value

Language EN

Program SAPMF02K

Number 90

Name Command Enhancement

Partners ZFIENH

Product KNKK

Table 2.7  T061V Table Entry for Vendor Control Data

The source code for module pool ZLFB1ENH looks much like ZKNKKENH (see Listing
2.16).

&---
*& Module Pool ZLFB1ENH
&---

PROGRAM zlfb1enh.

TYPE-POOLS: abap.

* Vendor General Control Data Enhancement

© 2013 by Galileo Press Inc., Boston (MA)106

Master Data Enhancements2

TABLES: lfb1, lfa1, t020.
--
* MODULE status_0300 OUTPUT
--
*
--
MODULE status_0300 OUTPUT.
 PERFORM modify_screen_0300.
ENDMODULE. “status_0300 OUTPUT

&---
*& Form modify_screen_0300
&---
* text
--
FORM modify_screen_0300.
 LOOP AT SCREEN.
 IF t020-aktyp = ‘A’.
 screen-input = ‘0’.
 ELSE.
 screen-input = ‘1’.
 ENDIF.
 MODIFY SCREEN.
 ENDLOOP.
ENDFORM. “modify_screen_0300

Listing 2.16  ZLFB1ENH Source Code

2.5.2	 BAdI Definitions

The main BAdI definitions are VENDOR_ADD_DATA and VENDOR_ADD_DATA_CS, which
have almost the same interface as their customer counterparts. For vendor master
data enhancement, complete the following steps:

1.	In the IMG subtree Prepare Modification-Free Enhancement in Vendor
Master Record under Vendor customizing, add screen group Z0 with two
subscreens as shown in Figure 2.43.

2.	Implement method CHECK_ADD_ON_ACTIVE of BAdI definition VENDOR_ADD_DATA,
which reports screen group Z0 as active.

107

Accounts Payable (Vendors) 2.5

Figure 2.43  Vendor Data Screen Group Z0

3.	Implement method GET_TAXI_SCREEN of the filtered BAdI definition VENDOR_ADD_
DATA_CS, and assign screen group Z0 to the implementation filter value. In this
method, you return B in the E_HEADERSCREEN_LAYOUT export parameter, which
signals the main program that you are supposed to work with the company
code view of the vendor. You also return module pool ZLFB1ENH and screen
number 300.

Note

Unlike the BAdI definition CUSTOMER_ADD_DATA_CS, here E_HEADERSCREEN_LAYOUT can take
either B or E as possible values. B corresponds to the company code view of a vendor,
while E is for the purchasing view.

After finishing all of these steps, you can add another view to the vendor master
record, as shown in Figure 2.44.

© 2013 by Galileo Press Inc., Boston (MA)108

Master Data Enhancements2

Figure 2.44  Additional Tabstrip Control for Vendor Data

As you can see, additional screen groups are defined in the IMG for the vendor,
which are displayed using the tabstrip control.

As you might remember from Section 2.3, Accounts Receivable (Customers), you
have to implement more vendor BAdI definitions to achieve complete functionality
of the enhancement. Necessary method implementations of the VENDOR_ADD_DATA_CS
BAdI are listed here:

EE SET_DATA

Transfers data from the standard program to your enhancement together with
current transaction mode (edit/create/display).

EE GET_DATA

Transfers data from your program back to the standard program.

You also need to implement the following method of the VENDOR_ADD_DATA BAdI:

EE CHECK_DATA_CHANGED

Tells the standard program that data was modified in the enhancement.

Other methods for these two BAdI definitions are optional and can be used in the
same way as those of the similar customer BAdI definitions (for details refer to
Section 2.3.6, Calling Moments of BAdI Methods).

109

Accounts Payable (Vendors) 2.5

2.5.3	 Business Transaction Events

The set of available BTEs for the vendor master is also very similar to the customer’s
set (see Table 2.8).

Event
Number

Calling Moment

00001460 Called in the PAI logic of the starting transaction screen after the user
has entered transaction parameters (vendor number, company code,
etc.). The event can be used to implement an additional authorization
check. This event is called in all transaction modes; while others are
only called in create and edit modes.

00001450 Called in the PAI logic of virtually all tabstrip screens in create or edit
mode. This event allows for example change visibility of screen fields.

00001440 Called for final checks before saving (vendor number can be undefined
for internal numbering).

00001410 Used as a handler for OPFI dynamic function code. May return the
Change flag for vendor data. If more than one function module
is subscribed to the event, then the user requested to choose a
particular add-on.

00001430 Called in the PBO logic of the starting transaction screen (see PBO
module TRANSAKTIONS_INIT of module pool SAPMF02K). It allows
transferring custom-defined function code text. If more than one
function module is subscribed to the event, the OPFI function code
gets the default text “Additional Components.”

00001420 Called after the vendor data have been updated and before calling the
SAVE_DATA method of the VENDOR_ADD_DATA BAdI.

00001421 Called after the vendor data have been updated and after calling the
SAVE_DATA method of the VENDOR_ADD_DATA BAdI, and after the customer
change documents update.

Table 2.8  Vendor Master BTE List

2.5.4	 Function Module Exits

The vendor master has its own old-fashioned enhancement SAPMF02K (seen in
Transaction SMOD) with the single function module component EXIT_SAPMF02K_001,
which is called before saving vendor data. The function doesn’t have exceptions

© 2013 by Galileo Press Inc., Boston (MA)110

Master Data Enhancements2

in its interface (just like EXIT_SAPMF02D_001 for customer), so you directly use the
MESSAGE statement to show an error or warning.

2.6	 Summary

As you can see, financial master data has a wide variety of user exits and allows
developers to implement complex solutions, which can be tailored to the specific
needs of their corporate business. At the same time, some enhancement techniques
require tricky and dangerous developmental tricks such as using dynamic assign or
editing data that belongs to SAP. These methods are not generally recommended.
In such cases, you should thoroughly evaluate the necessity of the enhancement,
the pros and cons, and the possibility of a negative impact. The presence of differ-
ent enhancement techniques, which can seem redundant, are the results of long
evolution and development of the SAP ERP system.

In the next chapter, we’ll consider methods and tools to intervene into probably
the most sensitive process of any ERP system: posting to Financial Accounting—the
process where the system counts money.

111

Accounting documents represent a financial transaction, which is the act
of transferring an amount of money from one or more accounts to one
or more other accounts. In this chapter, we briefly discuss the technical
structure of accounting documents and main database tables, which is where
transactional information is stored. Then we will consider in detail the
processing of accounting documents with available user exits.

3	 Posting to Accounting

This chapter begins with the technical structure of the accounting document: tables
and their relations followed by how accounting data can be enhanced. After that,
we dive into program logic and walk through the process of enhancing the logic of
accounting document posting both in dialog transactions and programmatically. We
also touch on some internal techniques that SAP uses to update other application-
specific data during posting.

3.1	 The Technical Structure of an Accounting Document

If you are familiar with the common practice of representing business documents
in a RDBMS (Relational Database Management System), then you might expect
that almost every document model consists of at least two tables: a header table
and an item table, where multiple items correspond to one header. However, the
accounting document model in the SAP ERP system is represented with many more
tables, which sometimes contain redundant and duplicated data. This is partly
done for performance reasons but is mostly a consequence of the long evolution
of the SAP system.

In the SAP ERP system, an accounting document has a compound key, consisting of
the company code, document number, and fiscal year. The accounting primary key
can be confusing for those new to this subject, and it has an impact on programming
practice in accounting. The following is the main rule of this ABAP niche:

© 2013 by Galileo Press Inc., Boston (MA)112

Posting to Accounting3

Whenever you develop a SELECT statement against financial transaction data in
SAP ERP, always check that you have included all three key fields in the WHERE
clause.

Note

Although the following anecdote is not an encouraging way to start this topic, it should
help you understand the importance of accurately formulating SQL queries.

A disastrous error in one FI implementation dealt with a missing key field in the UPDATE
SQL statement: After discussing all possible alternatives, the client decided to directly
update existing accounting transactions to implement some business requirements. The
updating report was implemented and then thoroughly tested in the Q & A system. The
trouble was that the Q & A system was not identical to the production and contained
only one company code. Additionally, the UPDATE statement in the report did not contain
the company code in its WHERE clause (remember: the accounting document key consists
of three fields). After the report was run, the disastrous results were not noticed at once,
so in about a month, the company had to restore the data from quite an old backup file,
which resulted in a sleepless month for the accounting department.

After that optimistic note, let’s dive into the technical representation of an accounting
document in the database. We’ll discuss how the system stores a single document
and what tables are used to represent aggregate (total) values in accounting.

3.1.1	 The Header

The header table of the accounting document is BKPF, which contains general
information about the document (e.g., company code, fiscal year, posting date,
document currency, etc.).

Note

When developing user exits, you often need to know the source of the accounting
document (for example, if it came from the purchasing or sales departments). While the
accounting document header contains the original transaction code where the document
was created (field BKPF-TCODE), it is not always correct, as sometimes the document
can be generated automatically. For this reason, it’s better to analyze fields BKPF-AWTYP
and BKPF-AWKEY. The former contains an application specific code characterizing the
source application, and the latter is the key of the source document. For example, the
RMRP code in the BKPF-AWTYP field tells us that the document originated from the
invoice verification process; in that case, the field BKPF-AWKEY contains the full number
of the incoming invoice (document number + fiscal year).

113

The Technical Structure of an Accounting Document 3.1

3.1.2	 Items

Raw document item data are stored in several cluster tables. A cluster table is a special
kind of database table that isn’t visible in RDBMS, as opposed to transparent tables.
A cluster contains one or more tables with the same primary key and different data
field structure. The most common examples of SAP cluster tables are listed here:

EE BSEG	
Accounting line-item data (most common table in SAP ERP).

EE KONV	
Pricing condition data.

EE CDPOS	
Change document data.

Technically, a cluster is a table with a group of key fields common to all of the cluster
member tables and some additional control fields specific to cluster administration.
The actual data are stored in a long character-typed field.

You should be aware of one main restriction and one main recommendation when
working with cluster tables: You can’t use such tables in a JOIN, and you must
strictly use the full primary key when selecting data from the clustered table, or
you might experience poor performance behavior.

Note

In SAP ERP, Table BSEG contains more than 300 data fields. The number of fields
depends on which enhancement package is installed and which customer enhance-
ments are implemented.

If you open Table BSEG in Transaction SE11 and then click the Delivery and
Maintenance tab, you’ll see that Table BSEG is assigned to cluster RFBLG (as
shown in Figure 3.1).

Through the Repository Information System, which is accessible from virtually
every ABAP Workbench transaction, we find that cluster RFBLG contains the tables
listed in Table 3.1.

© 2013 by Galileo Press Inc., Boston (MA)114

Posting to Accounting3

Figure 3.1  Delivery and Maintenance Tab of Table BSEG

Name Description

BSEC One-Time Account Data Document Segment

BSED Bill of Exchange Fields Document Segment

BSEG Accounting Document Segment

BSES Document Control Data (Obsolete)

BSET Tax Data Document Segment

Table 3.1  Tables of Cluster RFBLG

Table BSEG contains a huge variety of line-item information such as account number,
posting key, transaction amount, and many additional attributes of the account
assignments transaction. Account assignments control the distribution of the amount
to other components or subsystems (e.g., Cost Controlling, Funds Management,
Asset Accounting, etc.).

If you look into the Currency/Quantity fields tab of Table BSEG in Transaction
SE11, you’ll notice dozens of amount fields. However, in most cases, you’ll be
dealing with two main amount fields:

115

The Technical Structure of an Accounting Document 3.1

EE WRBTR
Line-item amount represented in document currency.

EE DMBTR	
Amount in local company currency.

You might expect that both of these amount fields must not be zero in an account-
ing document line item; however, there are situations when a document currency
amount is zero, while the local currency amount is not. For example, this occurs
when a company needs to count profit or loss depending on the currency rate
change. Often such transactions occur at the end of the fiscal year.

Note

Do you know why the local currency amount field in an accounting document is named
DMBTR? Because SAP originated in Germany, BTR stands for betrag (the German word
for “amount”) while DM stands for Deutsche Mark (German Mark, Germany’s former
currency). Most likely, in early releases of SAP, the Deutsche Mark was the only local
currency for all clients.

Another meaningful cluster table is BSET, which contains tax data for the docu-
ment. This cluster table contains the tax code, tax rate, tax amount, and tax account
where the company counts its taxes. From the entry in Table BSET, you generally
can’t derive a single item to which this tax corresponds; there is no one-to-one
correspondence between the tax and taxable items in an accounting document
because the system sums up taxes with the same tax code and tax account and
generates one totaling tax item for a group of taxable items.

Note

If you have SAP ERP with enabled Flexible General Ledger accounting (which is enabled
by default), then you can use splitting to evaluate a particular tax proportion for each
taxable item.

3.1.3	 Parked Document Tables

In the SAP system, you can create a preliminary document called a parked docu-
ment. This is a kind of a draft document that doesn’t affect any accounting reports
or account balances. A parked document can even have a nonzero balance; that is,
the sum of all its credit line items doesn’t have to be equal to the sum of its debit
line items. Table 3.2 lists the set of tables for parked documents.

© 2013 by Galileo Press Inc., Boston (MA)116

Posting to Accounting3

Name Description

VBKPF Document Header for Document Parking

VBSEC Document Parking One-Time Data Document Segment

VBSEGA Document Segment for Document Parking—Asset Database

VBSEGD Document Segment for Customer Document Parking

VBSEGK Document Segment for Vendor Document Parking

VBSEGS Document Segment for Document Parking—General Ledger Account
Database

VBSET Document Segment for Taxes Document Parking

Table 3.2  Set of Tables for Parked Documents

3.1.4	 Secondary Indices

As already mentioned, you can likely have serious performance problems if you
don’t use the entire key of accounting document when selecting data from cluster
tables. At the same time, it’s a common practice to build up reports using nonkey
fields; for example, an accountant can be interested in selecting line items for a
particular customer in a specific date interval.

To enable accounting data selection on a line-item basis with acceptable perfor-
mance, SAP implemented another set of tables, which are transparent. The set is
called secondary indices. Each line item has an attribute called account type, which
characterizes the accounting area the account belongs to, for example, general ledger
account, accounts receivable account (or customer account), or accounts payable
account (vendor account). Account types in the accounting document are coded by
the one-character field KOART: S for general ledger account, K for vendor account,
and D for customer account.

Note

All available account types can be found in the KOART domain definition in Transaction
SE11. The domain has a list of fixed values.

For these three account types, SAP implemented a set of six tables: a pair of tables
for each account type.

117

The Technical Structure of an Accounting Document 3.1

EE BSAS and BSIS for general ledger accounts

EE BSAD and BSID for customer accounts

EE BSAK and BSIK for vendor accounts

One table of each pair (with the letter I in its name) contains all line items with
unclear liability (e.g., unpaid vendor invoice), and the other table of each pair (with
letter A) contains those cleared.

Notice that each pair of tables has the same set of key fields, with two of them
corresponding to the fact of debt clearance: AUGDT (date of clearance), AUGBL
(clearance document number). Also notice that the AUGDT and AUGBL fields are
always empty in the table with the letter I, and its counterpart has those fields filled
with values. The union of each pair represents the whole set of line items of the
corresponding account type.

The most standard accounting line-item reports are built using these tables. See,
for example, the structure of such logical databases as SDF, KDF, and DDF, which
are mostly used in standard SAP reports.

3.1.5	 Total Tables

Another practical kind of accounting report reflects the different types of a total
report: the account balance for a fiscal period or the whole year, the reports for
comparing figures of different fiscal periods, and so on.

Mathematically, it’s sufficient to have just the main accounting document tables
(header and items) to build any fiscal period report—adding amounts item by
item. But remember, in this case, to calculate the opening account balance, you
have to sum up all of the account line items from the very beginning. Knowing
that an ordinary SAP client can produce a few million transactions each year, you
can imagine that the calculation of an account opening balance becomes a mission
impossible from the performance point of view. For this reason, SAP delivers a
variety of summation tables storing totals.

As of SAP ERP 6.0, SAP introduced a significant extension of accounting technol-
ogy known as the Flexible General Ledger. From a technical point of view, this is
an evolutionary step of Special Ledger technology known at least from SAP R/3
3.0. The Flexible General Ledger solution simplifies extending accounting with

© 2013 by Galileo Press Inc., Boston (MA)118

Posting to Accounting3

additional dimensions and ledgers, thus helping customers build complex account-
ing methodology (e.g., parallel accounting). We’ll use classic ledger to refer to all of
the legacy accounting tables and techniques used long before the appearance of
the Flexible General Ledger.

The next subsection shows how total figures are stored in the system.

Total Tables of the Classic Ledger

Now let’s see how the SAP system stores total figures in Financial Accounting
(FI). We’ll consider how totals are stored in the classic ledger and also in the new
Flexible General Ledger.

GLT0

Each record of the GLT0 table contains either credit or debit total amounts for
each period of one fiscal year for one company code account. Fields with the suffix
VT (HSLVT, TSLVT, and others) hold the opening value for the fiscal year. If you
select the record with the same key values and previous fiscal year, the sum of the
VT field and all other 16 period fields gives the value of the next year. Therefore,
when calculating an account balance for a given period of a particular fiscal year,
you don’t have to select additional GLT0 records for that account.

Amounts are stored as groups of homogeneous fields: one numbered field for each
fiscal year period. You can see fields from HSL01 to HSL16, and from TSL01 to
TSL16. Why 16? In accounting, a year is divided into 16 months. Actually there
are 12 periods for 12 calendar months and also 4 additional periods, for end-of-
year reconciliation work, which normally is done manually by accountants. In the
end of a year when the 12th period is closed, no financial data can be sent from
other SAP ERP components (Sales, Procurement, etc.); only accountants can post
accounting documents manually, entering fiscal periods from 13 to 16.

Also notice that each GLT0 record contains a currency code as the primary com-
ponent. This is document currency. Amount fields with names starting with TSL
represent amounts in document currency. Other groups of fields have names starting
with HSL. These fields represent amounts in the company code home currency.

The structure of GLT0 obviously violates relational normal forms, so you can’t
calculate the sum of period fields using pure SQL. To effectively operate with such
structures, you should use special aided ABAP constructs: Cycling statements with

119

The Technical Structure of an Accounting Document 3.1

ASSIGN …INCREMENT (or obsolete DO … VARYING, and WHILE … VARY) can iterate
through a group of homogeneous fields.

Note

One of the annoying examples of negligent FI/CO programming techniques is calcu-
lating a fiscal period by extracting an MM component from a YYYYMMDD internal date
representation. Always convert the calendar date into a fiscal period with SAP function
DATE_TO_PERIOD_CONVERT, even if in your company the fiscal year is equal to the calendar
year. You can never predict business or legislation change; for example, at one moment or
another your corporation can decide to open a branch in the USA with another company
code, with the fiscal year not equal to the calendar year.

LFC1, KNC1

Total values for customers and vendors are also gathered into special tables: LFC1
for vendors and KNC1 for customers. There are also repeating groups of amount
fields, although here you can see that each table record contains debit and credit
values for each fiscal period, unlike GLT0 where the Debit/Credit indicator is a
component of the primary key.

Total Tables of the Flexible General Ledger

Note

According to official SAP help, the Flexible General Ledger solution was first introduced
in SAP R/3 4.6b; however, this was a pilot implementation without many modern capa-
bilities such as document splitting, among others.

The SAP Flexible General Ledger can be switched on and off, and it’s turned on
by default. Using the Flexible General Ledger, several ledgers can be created with
different dimensions specific to a particular accounting methodology. Technically,
every Flexible General Ledger consists of several database tables for items and total
values. SAP delivers only one active main ledger (0L), which always exists. And its
database total table is FAGLFLEXT.

The name of a total table for a given ledger can be found in field TAB of customizing
table T881. This is where attributes for all ledgers defined in the system (not only
Flexible General Ledgers) are stored. You can distinguish Flexible General Ledgers

© 2013 by Galileo Press Inc., Boston (MA)120

Posting to Accounting3

from all others by whether there’s a value in the GLFLEX field. Flexible General
Ledgers have a value in this field, and other ledgers do not.

The structure of any ledger total table is similar to that of Table GLT0, with a number
of dimension fields and repeating amounts for every period. Keep in mind, how-
ever, that the Flexible General Ledger (just as its predecessor the Special Ledger)
has various dimension fields and up to 366 periods for daily ledgers. It is up to the
user to create a ledger with, for example, weekly periods. Therefore, you should
not make any assumptions on the amount field count in a Flexible General Ledger
total table. Fortunately, SAP always stores the number of a ledger’s periods for each
record in the RPMAX field, so it’s better to use this field in all processing routines,
including GLT0, thus making your program logic more robust. Listing 3.1 shows a
period amounts processing code snippet.

DATA: ls_faglflext TYPE faglflext.

FIELD-SYMBOLS: <tsl> TYPE faglflext-tslvt,
 <hsl> TYPE faglflext-tslvt.

* SELECT * FROM faglflext INTO ls_faglflext
* WHERE...
*
* To be implemented...
*
* ENDSELECT.

DATA inc TYPE i.

WHILE sy-subrc = 0.
 inc = sy-index—1.
 ASSIGN ls_faglflext-tsl01 INCREMENT inc TO <tsl>
 CASTING RANGE ls_faglflext.
 ASSIGN ls_faglflext-hsl01 INCREMENT inc TO <hsl>
 CASTING RANGE ls_faglflext.

* To be implemented...

ENDWHILE.

Listing 3.1  FAGLFLEXT Record Amounts Processing

121

Core Program Modules of Accounting 3.2

3.2	 Core Program Modules of Accounting

The core functionality of the accounting component is gathered in package FBAS.
Here you can find almost all module pools, reports, and function groups. From a
technical point of view, an accounting document can be created in the system via
two main methods: dialog transactions or program logic.

Among these programs, two main modules are module pool SAPMF05A and function
group RWCL. Module pool SAPMF05A is an implementation of all of the main dialog
transactions for entering accounting documents, whereas function group RWCL is
in the background when other SAP functional components need to post values to
accounting.

In the following subsections, we’ll discuss how to enhance user interaction in classic
transactions and also newer Enjoy transactions.

3.2.1	 Screen Enhancement of Accounting Posting Transactions

The two kinds of dialog transactions for posting accounting documents are old style
transactions (e.g., F-02, F-42, etc.), and Enjoy transactions (e.g., FB50, FB60, etc.).
Both kinds of transactions have screen and UI enhancement capabilities, although
Enjoy transactions possess more enhancement features.

In the next subsection, we’ll show how to extend the GUI status of posting transac-
tions using BTEs.

GUI Status Enhancement with Open FI

The GUI status enhancement looks like additional entries in the menu and toolbar.
For example, you can open GUI status ZBE of module pool SAPMF05A shown in
Figure 3.2. There you can see several function codes (OPF1, OPF2, etc.) that refer-
ence dynamic text. Also, there is an additional dynamic function code OPFI in the
menu bar.

In old-style transactions, status enhancements are available only in document
line-item view, whereas in Enjoy transactions, they are visible both in document
overview and line-item view. You should also notice that GUI status enhancements
are not available in document edit transactions.

© 2013 by Galileo Press Inc., Boston (MA)122

Posting to Accounting3

Figure 3.2  Additional Function Codes in GUI Status ZBE of Module Pool SAPMF05A

To make additional function codes active, you have to implement two BTEs: 00001070
and 00001080. The first event implements a particular action you want to perform
when a user clicks a corresponding button; the second is a tool for transferring
your application-specific caption for an additional button.

First, you have to create two function modules, which will then be subscribed
to the events. The most convenient way of creating function modules for BTEs
is copying the sample functions. Sample interface functions can be found in the
Open FI information system in Transaction FIBF. Follow the menu path Environ-
ment • Info system (P/S). The resulting screen of this report for BTE 00001070 is
shown in Figure 3.3. By clicking the Sample function module button, you will
be taken to Transaction SE37, which shows the required function module that you
can copy to your own.

In the IDES system, we implemented both functions in the simplest possible way
(see the source in Listing 3.2 and Listing 3.3). As you can see, we just transfer
some predefined text into a button caption and show an information message as
a reaction to the button click.

123

Core Program Modules of Accounting 3.2

Figure 3.3  Business Transaction Events Information System Screen

FUNCTION z_sample_interface_00001080.
*”--
””Local Interface:
*” IMPORTING
*” REFERENCE(I_SPRAS) LIKE SY-LANGU
*” REFERENCE(I_AKTYP) TYPE AKTYP
*” REFERENCE(I_DYNCL) TYPE DYNCL
*” EXPORTING
*” VALUE(E_FTEXT) LIKE FTEXTS-FTEXT
*”--
 e_ftext = ‘FI Sample Enhancement’.
ENDFUNCTION.

Listing 3.2  00001080 BTE Implementation

FUNCTION z_sample_interface_00001070.
*”--
””Local Interface:
*” IMPORTING
*” REFERENCE(I_BKPF) TYPE BKPF
*” REFERENCE(I_BSEG) TYPE BSEG
*” REFERENCE(I_AKTYP) TYPE AKTYP
*” REFERENCE(I_DYNCL) TYPE DYNCL

© 2013 by Galileo Press Inc., Boston (MA)124

Posting to Accounting3

*” EXPORTING
*” REFERENCE(E_XCHNG) LIKE OFIWA-XCHNG
*”--
 MESSAGE ‘Sample BTE event 00001070 implementation’ TYPE ‘I’.
ENDFUNCTION.

Listing 3.3  00001070 BTE Implementation

The 00001070 BTE has an export parameter E_XCHNG, which you might assume
serves as a modification flag. However, it actually is redundant because the event
is called only in the document-creation process, so there is no need to transfer the
modification flag to the main program.

If you plan to employ event 00001070 for requesting additional data from a user,
you have to provide functionality for saving your data together with the account-
ing document. As a rule, the data might be dependent on an accounting document
number. Be aware that at the moment of calling event 00001070, the document
number is still undefined. The document number becomes available only in BTE
00001030, which we’ll discuss later.

Note

BTEs 00001070 and 00001080 are interdependent. The enhanced button caption becomes
visible only if there are active subscriptions to both events 00001070 and 00001080 with
the same customer product. You can also define P&S modules for a partner product; in this
case, subscriptions must have the same sequential number in both events.

Both events have an import parameter of type BSEG, which corresponds to a docu-
ment line item. When fired on the overview screen of an Enjoy transaction (e.g.,
FB60 or FB70), the system transfers to the event data of the last added line item.

Creating Products

Before linking (or subscribing) newly created function modules to BTEs, you have
to create and activate a product in Transaction FIBF. The product is just a code for
an arbitrary set of BTEs and/or process implementations. You maintain product
codes and their activation status in Transaction FIBF using menu path Settings •
P/S Modules • … of a customer.

125

Core Program Modules of Accounting 3.2

Linking Function Modules and BTEs

After creating function modules, you have to subscribe them to the events. In
the IDES system, we created and activated a product of customer ZACCENH (see
Figure 3.4).

Figure 3.4  Customer Product ZACCENH

Here you define records for events 00001070 and 00001080 as shown in Figure 3.5.

After implementing function modules and linking them to both events in the IDES
system, the resulting FB60 screen looks like Figure 3.6. The same additional button
and menu also can be seen in old-style Transaction F-43 (see Figure 3.7).

© 2013 by Galileo Press Inc., Boston (MA)126

Posting to Accounting3

Figure 3.5  BTE Linkage for Events 00001070 and 00001080

Figure 3.6  Additional Menu Entry and Toolbar Button in Transaction FB60

127

Core Program Modules of Accounting 3.2

Figure 3.7  Line-item View in Transaction F-43

3.2.2	 Screen Enhancement of General Ledger Posting Enjoy
Transactions with BAdI

You can use BAdI definition FI_HEADER_SUB_1300 to add your custom-defined
subscreen to the Basic data tab of Transaction FB50’s overview screen. Figure 3.8
shows the overview screen of Transaction FB50 without enhancement.

The bottom area of the Basic data tab contains an empty subscreen that can be filled
with BAdI implementations. For testing purposes, in the IDES system, we created
simple subscreen 0300 in module pool ZFB50ENH containing just text labels.

If you open BAdI definition FI_HEADER_SUB_1300 in Transaction SE18 and open the
Subscreens tab, you can see that the BAdI is linked to subscreen 1300 of module
pool SAPMF05A (see Figure 3.9). Also notice that the BAdI is filter-dependent, and
its filter value is a country ISO code (see the Attributes tab).

© 2013 by Galileo Press Inc., Boston (MA)128

Posting to Accounting3

Figure 3.8  Starting Screen of Transaction FB50

Figure 3.9  Subscreen Linkage of the BAdI Definition FI_HEADER_SUB_1300

129

Core Program Modules of Accounting 3.2

As in the IDES system, we are testing enhancements using company code 1000
(well-known to SAP FI training attendees), which is assigned to Germany (ISO
code DE); we also created an implementation of BAdI FI_HEADER_SUB_1300 with
filter value DE. Because the subscreen doesn’t include any interaction logic but only
static texts, we don’t implement any interface methods of the BAdI. Nevertheless,
we can successfully activate the implementation and check the results by opening
Transaction FB50 (see Figure 3.10).

Figure 3.10  Enhanced Overview Screen of Transaction FB50

Note that this BAdI implementation affects old-styled posting transactions such as
FB01, FBD1, and FBD5.

If you need to implement data transfer between your own subscreen and the main
program, then you have to implement the BAdI interface methods. Using Transaction
FB50 as an example, these methods are called in the following moments:

© 2013 by Galileo Press Inc., Boston (MA)130

Posting to Accounting3

EE PUT_DATA_TO_SCREEN_PBO is called from within the PBO logic of the Basic data
tab screen (screen 1010 of the SAPMF05A program) before entering the PBO
logic of your own screen.

EE PUT_DATA_TO_SCREEN_PAI is called in the PAI logic of the 1010 screen just after
checking and transferring basic document header data into the main program
variables and before the PAI logic of your enhancement screen.

EE GET_DATA_FROM_SCREEN_PAI method is called after executing your own screen
PAI logic and before other standard field checks.

3.2.3	 Screen Enhancement of Customer or Vendor Enjoy Transactions
with BAdI

BAdIs can be used to add screen enhancements to Enjoy accounting transactions
for entering customer or vendor documents such as FB60 (Incoming Invoice) or
FB70 (Outgoing Invoice). Figure 3.11 shows the overview screen of Transaction
FB60. The Basic data tab is the area where you can implant your own subscreen.
This area contains either screen 0510 for customer accounts (Transaction FB70) or
0010 for vendor accounts (Transaction FB60). Both subscreens are defined within
function group FDCB, which implements screen data management tools in a variety
of transactions, including accounting Enjoy transactions.

You can tailor your own subscreen to this area by implementing one of five BAdI
definitions: from BADI_FDCB_SUBBAS01 to BADI_FDCB_SUBBAS05.

Note

The vendor subscreen 0010 of function group FDCB contains six dynamic subscreen areas,
and there is a BAdI definition BADI_FDCB_SUBBAS06 for the sixth subarea. However, this
BAdI can only be implemented by SAP itself and used only in the Materials Management
Invoice Verification application.

All five BAdI definitions look the same; the only difference can be found on the
Subscreens tab in Transaction SE18. As you can see in Figure 3.12, the BADI_
FDCB_SUBBAS01 definition is linked to the SUBBAS01 subscreen area. Other BAdI
definitions are linked to the subscreen area with the corresponding number: BADI_
FDCB_SUBBAS02 to SUBBAS02, BADI_FDCB_SUBBAS03 to SUBBAS03, and so on.

131

Core Program Modules of Accounting 3.2

Figure 3.11  Starting Screen of Transaction FB60

Figure 3.12  Subscreens Tab of the BAdI Definition BADI_FDCB_SUBBAS01

© 2013 by Galileo Press Inc., Boston (MA)132

Posting to Accounting3

Note

Because a BAdI definition manages only one subscreen area, it’s logical that none of
the five BAdIs allows multiple implementations. Therefore, if you need to enhance a
customer or vendor screen in Enjoy accounting transactions, you first have to make
sure none of the five BAdIs are being implemented by some other developer or by an
installed add-on.

Before implementing a BAdI, you have to design your own subscreens. In the IDES
system, we created two simple subscreens in module pool ZFB50ENH for a customer
and vendor to illustrate the technique (see Figure 3.13 and Figure 3.14).

Figure 3.13  Custom-Defined Vendor Subscreen to Be Used in Transaction FB60

Figure 3.14  Custom-Defined Customer Subscreen to be used in Transaction FB70

Each of the BAdI definitions (from BADI_FDCB_SUBBAS01 to BADI_FDCB_SUBBAS05)
supports single implementation. So we can enhance the screen only if we have
an unimplemented BAdI from the range. Because several installed add-ons in the
system use these BAdI definitions, only BADI_FDCB_SUBBAS05 is available.

133

Core Program Modules of Accounting 3.2

Implementing the BAdI

We created a new implementation for BAdI BADI_FDCB_SUBBAS05 named ZFB50ENH_
EXAMPLE. The key point here is defining a linkage between the host subscreen area
of the standard SAP program and our own subscreen. We make corresponding
settings on the Subscreens tab of the BAdI implementation. In Figure 3.15, you
can see that our 200 screen linked to subarea SUBBAS05 of screen 510 in program
SAPLFDCB (which is actually a main program of function group FDCB) and subscreen
100 corresponds to the subarea of screen 10.

Figure 3.15  Custom-Defined Subscreen Linkage with the Host Program Screen Subarea

After activating the BAdI implementation, you can test the standard transaction.
Figure 3.16 shows how the look of Transaction FB60 changed. To make your newly
created subscreen area more attractive, you have to scroll down to the Basic data
tab.

© 2013 by Galileo Press Inc., Boston (MA)134

Posting to Accounting3

Figure 3.16  Enhanced Overview Screen of Transaction FB60

Data Transfer

If you plan to use the enhancement for supplying additional data to the document,
then you must implement data transfer to and from the main program. Each of the
five BAdI definitions has two methods:

EE PUT_DATA_TO_SCREEN_OBJECT

Used to transfer data from the main program to your own subscreen; called in
PBO.

EE GET_DATA_FROM_SCREEN_OBJECT

Used to transfer your own screen data back to the main program; called in
PAI.

135

Accounting Document Data Enhancement 3.3

Both methods have one parameter of structure type INVFO. By default, INVFO has
numerous fields from Tables BKPF, BSEG, and some other accounting document
tables. The host program uses MOVE-CORRESPONDING logic to transfer data to and
from the INVFO structure before or after calling the BAdI implementation. So if you
use your own custom-defined fields to display and modify data, you have to make
sure that INVFO includes those fields (e.g., in an append structure), together with
other accounting tables you use to store custom-defined data.

Note

The SAP system uses vendor or customer line items depending on the transaction type
when transferring data to and from the INVFO structure. For example, in Transaction FB60
(Incoming Invoice), as soon as a user enters a value into the Vendor number field, the SAP
system generates a vendor line item that is used to fill structure INFVO with values.

3.3	 Accounting Document Data Enhancement

Expanding an accounting document with custom defined fields is a common
task. You can hardly come across an SAP ERP implementation without additional
accounting document fields. Most often, the line-item (not header) structure of
the document is enhanced because line items are the entities that directly affect a
particular account balance and turnover. Additional fields help businesses to build
a corporate-specific finance methodology and reporting. In SAP, these fields are
also known as coding blocks or account assignments.

Technically, line items can be enhanced with additional fields in two steps:

1.	Enhance special customer include structure CI_COBL, which contains custom-
defined fields. This can be done directly in Transaction SE11.

2.	Add the same fields to Table BSEG, which is formally a modification.

You can do this using the IMG node in menu path Financial Accounting (New) •
Financial Accounting Global Settings (New) • Ledgers • Fields • Customer
Fields • Edit Coding Block. Here you not only can enhance data structures but
also maintain line-item subscreens, which will then be used in all account docu-
ment transactions.

© 2013 by Galileo Press Inc., Boston (MA)136

Posting to Accounting3

In the IDES system used for training purposes, you can see that many custom-
defined fields were added to the system coding block. See an example of coding
block structure in Figure 3.17.

Figure 3.17  Example of Coding Block Structure

Note

All of the field names start with ZZ to comply with SAP naming conventions.

By introducing Flexible General Ledgers, SAP now allows you to expand totals
tables. You can see the corresponding node in IMG in the following menu path:
Financial Accounting (New) • Financial Accounting Global Settings (New) •
Ledgers • Fields • Customer Fields • Include Fields in Totals Table. In the
pre-Flexible General Ledgers era, you could build a similar functionality only by
using Special Purpose Ledgers.

137

Data Processing Enhancements during Dialog Processing 3.4

Note

Adding fields to accounting document line items and expanding totals tables can signifi-
cantly affect overall system performance. Thus, all decisions in this area should be made
after a thorough evaluation of the potential business impact.

3.4	 Data Processing Enhancements during Dialog
Processing

Many kinds of user exits (business transaction events and processes, and BAdI
implementations) are available during the dialog processing of an accounting
document. When implementing such user exits, be aware that they can be called
several times while a user works with the document. For example, some user exits
are called up in every PBO-PAI loop pass, which in turn can be initiated by various
user actions, such as simply pressing the (Enter) key. Other user exits are called
only once at the very start of the transaction.

In the following subsections, we’ll discuss available user exits and the moments
when they are called.

3.4.1	 Data Processing BTEs

Now let’s look at the available BTEs you can use to enhance accounting posting in
dialog transactions.

00001140 (POST DOCUMENT: Exclude OK [Enjoy] Codes)

This P&S event is called both in the PBO and PAI modules of most accounting
transactions. Its main function is to provide additional control over available GUI
function codes. The T_EXCTAB table parameter contains an exclusion list for GUI
status. The event also has table parameters T_BKPF and T_BSEG, which represent
the current state of the accounting document that is being created, displayed, or
edited.

In PBO processing, the T_EXCTAB table parameter is used as an exclusion list for the
next SET PF-STATUS command, whereas in the PAI module, the parameter is used
for checking entered function code for execution. As in PAI, the event is called
after transferring screen data into the program data. You can implement sufficient

© 2013 by Galileo Press Inc., Boston (MA)138

Posting to Accounting3

logic to either prevent or allow execution of a particular function code, depending
on whether program data has been changed.

00001085 (POST DOCUMENT: Functions for Line Item)

This event functionality is very similar to that of 00001080. The difference is that
the 00001085 event is called in every PBO processing logic, while 00001080 is called
only once. You can use event 00001085 to implement the dynamic button text
assignment, depending on the document data.

00001011 (POST DOCUMENT: Checks at Line-Item Level)

This event can be employed for additional check logic after a user has entered line-
item data. It is called in the PAI screen logic and has two import parameters, I_BKPF
and I_BSEG, for current document header and item, respectively.

This event transfers the check result via a direct error message without a RAISING
EXCEPTION addition. The host program shows an error message as information.

00001005 (POST DOCUMENT: Footer Input)

This event is called only for customer or vendor items during PAI logic processing.
The event can be used for additional checking of the customer or vendor docu-
ment items. It is called after the item posting key determination. Together with the
document header and item parameters, the event also has two structure parameters
of types SKB1 and SKA1 for passing reconciliation account data. You can display an
error message by directly using the MESSAGE statement.

3.4.2	 BTE Processes

00001110 (DOCUMENT POSTING: Check on Invoice Duplication)

This process is called only for vendor invoice posting transactions and can be used
to stop standard duplicate invoice checking. It is called from within the FI_DUPLI-
CATE_INVOICE_CHECK function module before performing the invoice duplicates
check against table BSIP. If you have your own duplication check logic, you can
implement it in the BTE process 00001110. To prevent performing standard sup-
plication logic, your process must return nonblank values in export parameter
E_NOSTD.

139

Data Processing Enhancements during Dialog Processing 3.4

00001100 (DOCUMENT POSTING: Adjust SAP Internal Payment)

This process can be used for external determination of payment terms for the
incoming vendor Invoice. The process is called only once in PAI logic processing
after entering all mandatory basic data of the invoice: document date, posting
date, vendor number, and so on. The process function should return the following
parameters: payment terms code, payment day counts, payment block key, payment
method, and payment baseline date.

3.4.3	 BAdI

FAGL_PERIOD_CHECK (Posting Period Check)

This BAdI has only the method PERIOD_CHECK. Using this method, you can imple-
ment external program logic to automatically decide if posting is possible to the
given period or not. Together with several import parameters such as company code,
fiscal year, posting period, and others, the PERIOD_CHECK method has a changing
parameter CH_SUBRC, which is used to transfer the result of external program logic.
If CH_SUBRC has a value of 0, then posting is allowed to the specified period; if the
value is 4, then posting is not permitted.

This BAdI method is called only once, as soon as a user has entered mandatory
fields in the accounting document header, including the posting date.

FI_TRANS_DATE_DERIVE (Derive BKPF-WWERT
from Other Document Header Data)

This BAdI has only one method: DERIVE_WWERT. It allows you to implement any
corporate-specific logic of the valuation date calculation. The BAdI is filter-depen-
dent, and the filter value is the country ISO code. In runtime, the filter value is the
country from the company code master record.

Method DERIVE_WWERT uses the document date, posting date, and document type as
import parameters. This method has one exporting parameter of type WWERT_D. Multiple
implementations of this BAdI are not permitted. The BAdI method is called only once—
as soon as a user enters the mandatory fields in the accounting document header.

FAGL_DERIVE_SEGMENT (Segment Derivation)

If you use the Flexible General Ledger and the segment accounting functionality,
you can use the BAdI definition FAGL_DERIVE_SEGMENT to externally derive a segment

© 2013 by Galileo Press Inc., Boston (MA)140

Posting to Accounting3

code based on values from the accounting document coding block. The notion of a
segment is used in the recently introduced Flexible General Ledger accounting as a
basic entity for segmental reporting.FAGL_DERIVE_SEGMENT is filter-dependent; and
code from the controlling area is the filter value in runtime. This BAdI interface has
only one method, GET_SEGMENT, which is called for each cost controlling relevant
line item.

FAGL_DERIVE_PSEGMENT (Partner Segment Derivation)

This BAdI is similar to FAGL_DERIVE_SEGMENT and is used to derive the partner seg-
ment from coding block data for segmental reporting. As its counterpart, the BAdI
has only one method, GET_PEGMENT, which is called just after the FAGL_DERIVE_SEG-
MENT BAdI call. It has the same filter and the same interface as its counterpart.

TR_GET_ACCNT_ASSIGN (Determine FM Account
Assignment from Coding Block)

In this case, the BAdI is used to derive Funds Management (FM) fields from other
fields of the coding block. This BAdI has a single method, GET_ACCNT_ASSIGN, which
is called for each line item in the PAI logic. The BAdI implementation should only
be used if you employ the FM functionality.

3.4.4	 Substitutions and Validations

The Financial Accounting component (FI) has its own specific technique for inter-
cepting and amending standard logic when entering accounting documents. The
technique is called validation and substitution. Generally, validations and substitu-
tions belong to a scope of responsibility of FI functional consultants because the
technique normally doesn’t involve ABAP development. However, it’s capable of
tailoring external programming logic in the form of external subroutine calls.

The corresponding customizing activity can be found in the IMG tree via the fol-
lowing menu path: Financial Accounting (New) • Financial Accounting Global
Settings (New) • Tools • Validation/Substitution. The resulting screen shows
a sample validation editing screen. As the names imply, validation is a tool for an
additional check, and substitution is a tool for changing field values.

Each validation and substitution of an object has its name and description and can
be assigned to any number of company codes. Each validation or substitution has
a specific callup point: header, item, and whole document. Both validation and

141

Data Processing Enhancements during Dialog Processing 3.4

substitution can have an arbitrary number of steps; each step has a prerequisite,
which is a preliminary execution condition. Each validation step has a check. A
message appears if the check fails. Each substitution step has one or more field
substitutions where you can specify a calculation for a particular single field value.
Prerequisites, checks, and substitutions can contain external subroutines, which is
why we included substitutions and validations in our discussion.

Defining a Subroutine Pool for FI Substitutions and Validations

Maintenance view V_T80D contains records where you assign a subroutine pool
to a particular application area. SAP provides several predefined application areas
for different functional modules. For FI substitutions and validations, the GBLS
application area is used. Figure 3.18 shows contents of the V_T80D view in the
IDES system. A common practice is to copy the standard sample subroutine pool
RGGBS000, which is delivered by SAP, to your own system. RGGBS000 has sufficient
comments to help you develop your own subroutines.

Figure 3.18  Subroutine Pool Assignment to Application Areas

© 2013 by Galileo Press Inc., Boston (MA)142

Posting to Accounting3

Defining Subroutines for Substitution and Validation

When defining subroutines for substitution or validation, you have to follow some
specific rules:

EE The subroutine name must be four characters long.

EE The subroutine can have either one parameter, or one parameter of type GB002_015
declared in type pool GB002.

EE The subroutine must register itself in another predefined subroutine, which can
be found in GET_EXIT_TITLES. If you copied your subroutine pool from standard
program RGGBS000, then GET_EXIT_TITLES contains explanation comments and
subroutine samples.

Substitutable Fields

Not all accounting document fields can be substituted. The list of substitutable
fields is maintained in the maintenance view VWTYGB01, referencing cross-client
table GB01. Field names relevant to FI substitution are stored in this view under
Boolean class 9. Figure 3.19 shows the substitutable fields list.

Calling Moments

In dialog transactions, validations and substitutions of the document header and
items are called from within PAI logic processing. In old-styled FI transactions such
as FB01, F-02, and others, documents, header substitutions, and validations are
called in the PAI logic in the first transaction screen, and then item level substitutions
and validations are called in the PAI logic of each line item. The whole document’s
substitutions and validations are called only when a user saves the document.

In Enjoy transactions such as FB50, FB60, and FB70, the main screen contains header
data fields together with a table control for entering item data. Header and item
substitutions and validations are called each time the system processes PAI logic.

Note

When you are running substitutions and validations, the accounting document number
is still undefined. You can only specify the document number during the document
saving process. At each callup point (header, item, and whole document), all relevant
substitutions are executed before validations.

143

Data Processing Enhancements during Document Saving 3.5

Figure 3.19  Substitutable Field List (Table GB01)

3.5	 Data Processing Enhancements during Document
Saving

Saving a newly created accounting document is a complex process, consisting of
the following phases:

1.	Generate additional line items (e.g., for tax calculations).

2.	Perform final checks of the whole document.

3.	Assign the document number.

4.	Update the database tables.

© 2013 by Galileo Press Inc., Boston (MA)144

Posting to Accounting3

At each phase, the system calls different kinds of user exits.

In the next subsection, we’ll see business transaction eventsprocesses and BAdIs
that are available when processing accounting document saves.

3.5.1	 BTE Events

First, let’s walk through the available BTE events.

00001005 (POST DOCUMENT: Footer Input) and 00001011
(POST DOCUMENT: Checks at Line-Item Level)

Events 00001005 (POST DOCUMENT: Footer Input) and 00001011 (POST DOCU-
MENT: Checks at Line-Item Level) are called for each automatically created line
item. (See also Section 3.4.1, Data Processing BTEs).

00001020 (POST DOCUMENT: Prior to Final Checks)

The event is called before the standard final check of the whole document. At the
moment of call, all amounts in the document are correct, and all necessary items are
generated (e.g., tax items). The document number is unavailable at this moment.

00001025 (POST DOCUMENT: Final Checks Completed)

This event is called after all standard checks, substitutions, and validations are
performed for the whole document. The document number is unavailable at this
moment.

Note

Some of you might remember that after the first introduction of this BTE event the source
code of the calling function OPEN_FI_PERFORM_00001025_E used ABAP memory for storing
transient variables, which made possible uncontrolled updates of accounting document
data. To the great disappointment of the FI development community, SAP has closed
this loophole via SAP Note 530655 and the subsequent support package.

145

Data Processing Enhancements during Document Saving 3.5

Despite this disappointment, we must admit that altering document data at this point
is not a good practice, and can lead to inconsistencies in posting data. For example, by
the time of the 1025 event call the system may already have performed actions such
as availability control in Funds Management, generating Cost Controlling documents,
or forming Profitability Analysis data (and many others). So, any significant change in
the document account assignment at this moment would definitely cause problems
with data consistency (not even considering changing amounts or adding new items).
To make things worse, such a flaw is not always apparent right away, and might not be
discovered until much later.

00001030 (POST DOCUMENT: Posting of Standard Data)

This event is called after registering the POST_DOCUMENT update function module
call and just before the final COMMIT.

Note

BTE 00001030 is the only user exit where the accounting document number is
available.

3.5.2	 BTE Processes

Now, let’s consider the BTE processes you can use to intervene in the posting
process.

00001120 (DOCUMENT POSTING: Field Substitution Header/Items)

Process 00001120 allows you to implement true programming substitution logic.
Unlike standard validations and substitutions in process 00001120, all substitutable
fields are passed via dictionary structures:

EE BKDF_SUBSTS

For recurring documents.

EE BKPF_SUBST

For document header fields.

EE BSEG_SUBST

For document line-item fields.

You transfer values to and from this intermediate area by using the MOVE-CORRE-
SPONDING statement. You can easily add additional fields to any of these structures
using append structures.

© 2013 by Galileo Press Inc., Boston (MA)146

Posting to Accounting3

Process 00001120 is called at the end of the final document checks, just before
running the standard FI substitutions and validations. The document number is
unavailable at the moment of call.

00001130 (POST DOCUMENT: SAP-Internal Field Substitution)

Process 00001130 has a similar interface to process 00001120, but it’s reserved
for SAP’s internal needs. The document number is unavailable at the moment of
call.

00001150 (OPEN FI EXIT 00001150: Get Offsetting Account)

This process is called after the standard substitution and validation. This substitution
capability is used via dictionary structure ACCIT_SUBST. The process is used for the
derivation of the offset account type and offset account number (fields ACCIT-GKOAR
and ACCIT-GKONT). The document number is unavailable at the moment of call.

00001170 (POST RESIDUAL ITEMS: Deactivate No. Range Buffers)

Process 00001170 is called at the moment of assigning the document number.
The process function receives the company code, fiscal year, and number range as
import parameters. Using export parameters E_NO_BUFFER and E_RANGE, the process
function can switch off number range buffering or even change the number range
according to business-specific logic. Switching off number range buffering provides
even sequential document numbering, which is required by some accountants.

3.5.3	 BAdIs

Numerous BAdI methods are called during the document saving process. However,
some can be used only by SAP; others belong to other application modules and are
out of the scope of our discussion.

3.6	 SAP Internal Techniques for Processing Accounting Data
Flow (RWIN)

SAP uses a P&S technique called the RW interface (RWIN) for posting account-
ing values from different SAP components (Sales, Logistics, Payroll) to a variety

147

SAP Internal Techniques for Processing Accounting Data Flow (RWIN) 3.6

of accounting components, including SAP General Ledger and Cost Controlling,
Profitability Analysis, Funds Management (budgeting), and many others.

Like most other P&S interfaces, RWIN has a control Table TRWPR (Table 3.3) that
stores function module names to be called at particular moments of accounting
document generation.

Name Key Description

PROCESS  Transaction type for which CO interface is accessed

EVENT  Phase of processing at which the RWIN function is called
up

SUBNO  Sequence number

COMPONENT Component in ACC interface

KZ_BLG Indicator: Function module operates in document

FUNCTION Name of function module

Table 3.3  TRWPR Table Structure

The interface function call is coded by PROCESS, EVENT, and SUBNO fields. The PROCESS
field codes a particular business process, which generates values in accounting; for
example, it can be goods receipt posting, vendor invoice posting, and so on. The
EVENT field is a phase of the processing (e.g., document item check), and SUBNO is
a number of the process step within one event. All function modules assigned to
a particular event must have the same predefined interface.

Note

The main trouble with RWIN is that it has no documentation, so if you want to use it you
have to spare a considerable amount of time for reading SAP source code and debugging
just to make sure you do the right things. At the same time, the initial stage of investiga-
tion for this interface can be rather easy. To discover all the events and functions of the
corresponding RWIN process, you just have to place a breakpoint at function module
RWIN_CHECK_SUBSET and start the transaction you want to check for the RWIN presence.

Both core accounting generation modules SAPMF05A and RWCL use the RWIN interface.
However, they use slightly different sets of P&S modules: RWCL mainly uses the
process DOCUMENT, whereas SAPMF05A uses processes BELEG and BELEGPOS, among
others.

© 2013 by Galileo Press Inc., Boston (MA)148

Posting to Accounting3

In dialog transactions, RWIN works only at the moments of either simulating
a document or saving it permanently. At the same time, the whole process of
generating an accounting document inside function group RWCL is built on RWIN.

Note

Table TRWPR is marked with delivery class “S”, which means that this data belongs to
SAP, and you should not change the data in any way. Nevertheless, you can append your
own entries to the table via the standard maintenance dialog, ignoring the corresponding
caution message. Remember, though, to comply with the function module interface and
assign a subnumber to your entry from the 900-999 interval. Additionally, you should
never delete any entries from this table. Generally, RWIN can be used as a last resort if
no other enhancement capabilities are available.

3.6.1	 RWIN Summary

The presence of RWIN should greatly simplify the introduction of the Flexible
General Ledger in SAP ERP. The way we see it, SAP developers just had to add
another bunch of RWIN compatible function modules to the existing interface and
voilà: The new technology is up and running without touching anything in old
stable interface! Well, at least the ideal process should look like this.

All in all, you likely won’t need to use RWIN, unless you are developing a brand
new industry solution. Regardless, it’s useful to know how to find the program code
where accounting data are updated because the source code is the most accurate
technical documentation.

3.7	 Differences in Data Processing between Dialog
Transactions and Program Functions

In practice, the SAP ERP system usually generates accounting documents automati-
cally; for example, when posting incoming vendor invoices in Materials Management,
or posting goods issues for outbound delivery in Sales and Distribution. On the
other hand, some customers employ BAPI functionality in their proprietary devel-
opments to automatically post accounting documents.

In all of these scenarios, function group RWCL is used, which represents the core
logic of accounting document creation: functions AC_DOCUMENT_CREATE, AC_DOCU-
MENT_POST, and AC_DOCUMENT_GENERATE. This function group is also used for mass

149

Summary 3.8

creation of accounting documents (direct input option). As compared to the manual
creation of an accounting document through a dialog transaction, the process of
automatic generation of an accounting document has a similar set and sequence
of user exits.

Note

Generating accounting documents via programming can be complex because there is
no way to automatically generate items for tax calculation. All data must be prepared
in your program.

In the next section, we’ll walk through the available BAdIs and business trans-
action events/processes you can use while generating an accounting document
programmatically.

3.7.1	 Additional BAdI AC_DOCUMENT

Function group RWCL uses additional BAdI AC_DOCUMENT in the process of generating
an accounting document. The BAdI method CHANGE_INITIAL is called at the very
beginning before checking input data by RWIN components. The CHANGE_AFTER_
CHECK method is called after the RWIN check.

3.7.2	 BTEs That Are Not Called

During the process of document generation within the RWCL function group, none
of the BTEs relevant to dialog interaction are called; such as 00001011, 00001140,
00001070, 00001080, or 00001085.

3.7.3	 Ending BTE 00001050 (POST DOCUMENT: Accounting
Interface)

This event is called instead of event 00001030 after assigning the document
number.

3.8	 Summary

As you can see, SAP provides a generous set of different kinds of user exits during
the process of creating and editing an accounting document. The available variety

© 2013 by Galileo Press Inc., Boston (MA)150

Posting to Accounting3

of techniques provides you with a rich programming toolbox, so you can intercept
and amend virtually any phase of an accounting posting. Remember, however,
that the power has its reverse side, and possible errors in core accounting data
processing can have a great negative impact.

In the next chapter, we’ll talk about some enhancements techniques in financial
reporting.

151

The main and final goal of any SAP ERP implementation is producing
accurate, timely, and complete financial reports.

4	 Enhancements in Reports

Financial Accounting with SAP ERP Financials has many different reports, and
corporate SAP developers produce even more reports that are specifically tailored
to particular business requirements. It’s often useful to examine standard reports
for enhancement capability because enhancements can significantly reduce develop-
ment and maintenance efforts. The most common practice in report development
is to take a similar report delivered by SAP, copy it into a custom program, and
amend the report according to corporate needs.

In the following sections, we’ll discuss how you can enhance the financial reports that are
used in the everyday practice of virtually any accounting department. Financial reports
are line-item reports, which show posting documents for a given period of time.

4.1	 Technical Architecture of the Line-Item Report

There are line-item reports for all main account types: general ledger account, vendor
account, and customer account. The transactions for these reports are listed here:

EE FBL1N	
Vendor line-items report.

EE FBL3N	
General ledger account line-items report.

EE FBL5N	
Customer line-items report.

Note

General ledger accounts have a new version of line-item report Transaction FAGLL03
that incorporates the new Flexible General Ledger functionality.

© 2013 by Galileo Press Inc., Boston (MA)152

Enhancements in Reports4

The technical architecture of all three reports looks very similar. All reports are
based on the corresponding logical database: SDF for general ledger accounts,
KDF for customer accounts (account receivables), and LDF for vendors (account
payables).

Note

A common belief about logical databases is that they are slow, inefficient, and obsolete.
However, this is not true. Many financial reports are built on logical databases, and almost
all HR reports are based on special-aided logical databases. As with other programming
tools, the myth originated from inappropriate usage, leading to the poor performance
of the software product.

Figure 4.1 shows how a typical line-item report looks—in this case, showing the
open items of a vendor. Line-item reports for the other two account types (general
ledger accounts and customers) look about the same.

Figure 4.1  Typical Look of a Line-Item Report

153

Technical Architecture of the Line-Item Report 4.1

It isn’t a coincidence that all three reports use the same function group FI_ITEMS
for report output. Function module FI_ITEMS_DISPLAY is used for ALV (ABAP List
Viewer) output. By default, the standard output is formatted as an ALV List, but
the user can switch to ALV Grid using menu path Settings • Switch list.

Note

If you plan to create your own FI line-item reports, it’s a good idea to reuse the FI_
ITEMS_DISPLAY function module because it has a basic drill-down functionality and can
also be enhanced.

All of the enhancements reside in the function group FI_ITEMS, so if you imple-
ment the enhancements, you affect all reports that employ the same functionality.
In the following subsections, we discuss the available enhancements and their
implementations.

4.1.1	 Header and Footer Output Enhancement

You can change the appearance of the result list’s header and footer by utilizing
BTE event 00001640 (LINE ITEM DISPLAY: Additional Header Lines). The event is
called only when the output is formatted using ALV List. While in ALV Grid, the
event is not called.

The event is called several times during output: during processing of the list’s
header and footer, and on the top-of-page event. In the IDES system we created, a
function module with an interface is compatible with BTE event 00001640. Listing
4.1 shows the sample implementation.

FUNCTION z_sample_interface_00001640.
*”--
””Local Interface:
*” IMPORTING
*” VALUE(I_RFXPO) LIKE RFXPO STRUCTURE RFXPO
*” VALUE(I_KNA1) LIKE KNA1 STRUCTURE KNA1
*” VALUE(I_LFA1) LIKE LFA1 STRUCTURE LFA1
*” VALUE(I_SKA1) LIKE SKA1 STRUCTURE SKA1
*” EXPORTING
*” VALUE(E_SUPPRESS_STANDARD) LIKE BOOLE-BOOLE
*” TABLES
*” T_LINES STRUCTURE EPTEXT
*”--

© 2013 by Galileo Press Inc., Boston (MA)154

Enhancements in Reports4

 CASE i_rfxpo-koart.
 WHEN ‘S’. “GL Accounts
 t_lines-color = ‘4’.
 t_lines-text = ‘Text with color 4’.
 APPEND t_lines.

 t_lines-color = ‘5’.
 t_lines-text = ‘Text with color 5’.
 APPEND t_lines.

 t_lines-color = ‘6’.
 t_lines-text = ‘Text with color 6’.
 APPEND t_lines.

 WHEN ‘D’. “Customers

 WHEN ‘K’. “Vendors

 WHEN space. “Either Top or Bottom
 t_lines-color = ‘1’.
 t_lines-text = ‘Text with color 1’.
 APPEND t_lines.

 t_lines-color = ‘2’.
 t_lines-text = ‘Text with color 2’.
 APPEND t_lines.

 t_lines-color = ‘3’.
 t_lines-text = ‘Text with color 3’.
 APPEND t_lines.
 WHEN OTHERS.
 ENDCASE.
ENDFUNCTION.

Listing 4.1  Source Code of 00001640 Event Implementation Component

The I_RFXPO import parameter of the sample function (see Listing 4.1) contains
control fields of the report, which you can use to distinguish the moments of call.
For example, you analyze field I_RFXPO-KOART to decide if the call was from the
header, footer, or top-of-page.

155

Technical Architecture of the Line-Item Report 4.1

You can’t precisely and completely determine what kind of transaction the call
came from using the I_RFXPO parameter. Therefore, the colored header and footer
will also appear in the customer line-item and vendor line-item reports. However,
this should be enough for testing needs.

Figure 4.2 shows the resulting output after activating our BTE event
implementation.

Figure 4.2  The Result of BTE 00001640 Implementation

You can see that the structure of table parameter T_LINES includes a one-character
COLOR field, whose meaning is obvious from its name. Digits from 1 to 7 are accept-
able for this field; they correspond to the standard list output color you use in a
WRITE statement.

© 2013 by Galileo Press Inc., Boston (MA)156

Enhancements in Reports4

There is also an export parameter, E_SUPPRESS_STANDARD, which allows you to sup-
press standard header/footer output. To do this, just return X in its value.

4.1.2	 Menu Enhancement with BTE Events

The GUI statuses of a classical line-item report have an additional function code
OPFI in the Environment menu. The function code references dynamic text OFIWA-
FTEXT.

To initialize the function code text, you have to develop a function module with
the appropriate logic and subscribe it to the BTE event 00001620. The function
interface is shown in Listing 4.2.

*”---
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_SPRAS) LIKE SY-LANGU
*” EXPORTING
*” VALUE(E_FTEXT) LIKE FTEXTS-FTEXT
*”---

Listing 4.2  The Interface of BTE Event 00001620

The function code text is returned in export parameter E_FTEXT. If there is more
than one event implementation, then the function text will be changed to the
predefined text “Additional components.”

Function code execution has to be implemented via BTE 00001610. The interface
is given in Listing 4.3.

*”---
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_KUNNR) LIKE KNB1-KUNNR
*” VALUE(I_BUKRS) LIKE KNB1-BUKRS
*” VALUE(I_BELNR) LIKE BKPF-BELNR DEFAULT ‘000000000’
*” VALUE(I_BUZEI) LIKE BSEG-BUZEI DEFAULT ‘000’
*” VALUE(I_GJAHR) LIKE BKPF-GJAHR DEFAULT ‘0000’
*”---

Listing 4.3  Interface of BTE Event 00001610

If you define more than one implementation of event 00001610, the user will see
a pop-up dialog box with available event implementations.

157

Technical Architecture of the Line-Item Report 4.1

This pair of BTE events can be used for implementing additional drill-down capa-
bilities in line-item reports. As you can see from the 00001610 interface, the event
is called for a particular selected line item.

Also note that your implementations will affect all reports that use the FI_ITEMS
function group for displaying line-item data.

4.1.3	 Menu Enhancement with BAdI

In addition to BTE events, there are two definitions to be used for GUI status
enhancement: FI_ITEMS_MENUE01 and FI_ITEMS_MENUE02.

Figure 4.3  BAdI FI_ITEMS_MENUE01 Function Codes

If you open any of these definitions in Transaction SE18, you can see several function
codes displayed on the FCodes tab, as shown in Figure 4.3. The FI_ITEMS_MENUE01
definition has function codes from +CUS01 to +CUS04, and FI_ITEMS_MENUE02 has
codes from +CUS05 to +CUS08. All function codes are assigned to program SAPLFI_
ITEMS, which is the main program of function group FI_ITEMS. Each function code

© 2013 by Galileo Press Inc., Boston (MA)158

Enhancements in Reports4

starts with +; this signals that the function code can be enhanced and won’t appear
in the menu unless there is an active implementation of the BAdI definition.

The same function codes appear in the default GUI status in function group FI_ITEMS,
which is used in line-item reports. (See GUI status ALV_ITEMS_AR.) You can see func-
tion codes from +CUS01 to +CUS08 in the Extras menu; also, two function codes
+CUS01 and +CUS05 appear in the toolbar. Unlike in BTEs, none of these BAdIs can
have multiple implementations.

Let’s create a sample implementation of FI_ITEMS_MENUE01 in the IDES system.
For testing purposes, it’s enough to develop a reaction to only one function code
just to see how it works.

First, you set function code attributes on the FCodes tab in the BAdI implementa-
tion. For +CUS01 function code, you enter “Sample function 1” in both the Function
text box and the Icon text box, enter “ICON_ALLOW” in the Icon name box, and
enter “Sample function” in the Info.text box. See Figure 4.4 for all function code
properties. You leave all other function code properties blank.

Figure 4.4  Function Code Properties in the BAdI Implementation

159

Technical Architecture of the Line-Item Report 4.1

Now you must develop a reaction for the +CUS01 function code. You have to imple-
ment interface method LIST_ITEMS01. For the purpose of this example, we just show
a senseless information message. See the method implementation in Figure 4.5.

As you can see, the method has the SELFIELD import parameter containing the
selected field’s data. The same type is used in function REUSE_ALV_GRID_DISPLAY for
passing information on the selected ALV line and field. The import table parameter
IT_ITEMS contains the current ALV output table.

Figure 4.5  LIST_ITEMS01 Method Implementation

To finalize the BAdI implementation, you have to develop interface method SHOW_
BUTTONS, which is designed to tell the host program which custom-defined buttons
are hidden and which are not. The method has export table parameter EXTAB, which
contains the function codes to be excluded from the GUI status. Because you’ve
only defined a reaction for the first function code +CUS01, you should hide all other
inactive codes. See the method source code in Figure 4.6.

© 2013 by Galileo Press Inc., Boston (MA)160

Enhancements in Reports4

The method SHOW_BUTTONS also has import parameters:

EE IT_ITEMS is the output table of the ALV framework.

EE FRANGE is the calling report selection parameter.

Using these parameters, you can implement much more complex logic for deacti-
vating GUI status function codes.

Figure 4.6  SHOW_BUTTONS Method Source Code

Figure 4.7 shows the general ledger account line-item report (Transaction FBL3N)
after activation of the BAdI implementation. Notice the additional toolbar but-
ton with the previously assigned icon and text.

161

Technical Architecture of the Line-Item Report 4.1

Figure 4.7  The General Ledger Account Line-Item Report After Activating the BAdI
Implementation

4.1.4	 Output Layout Enhancement

Besides GUI status enhancements, the line-item report provides a set of BTE events
for output layout enhancement. Using these events, you can output additional fields
into line items or even change the contents of the standard output.

If you plan to add your own calculated fields, you first have to extend the ABAP
Data Dictionary structure RFPOS and RFPOSX with the same fields. Then, you have
to run report RFPOSXEXTEND, which combines fields from Tables RFPOSX and
those maintained in the customizing view V_T021S (or V_FAGL_T021S) into the
automatically generated structure RFPOSXEXT. Maintenance views V_T021S and
V_FAGL_T021S refer to the same table (T021S) and represent the IMG activity
Define Special Fields for Line Item Display.

Figure 4.8 shows the starting screen of report RFPOSXEXTEND.

© 2013 by Galileo Press Inc., Boston (MA)162

Enhancements in Reports4

Figure 4.8  Starting Screen of RFPOSXEXTEND Report

After extending structures RFPOS and RFPOSX, you implement BTE events 0000163
and 00001650. Event 00001630 is called before sequential processing of the line
item’s output table. Event 00001650 is called for each selected line item.

In 00001630 event implementation, you should prepare your own arbitrary data
selection; for example, you select data from all necessary database tables into
internal tables. Inside event 00001650, you use previously selected data for efficient
custom field calculation.

Listing 4.4 shows the subscription function interface for event 00001630. Table
parameter T_KONTAB contains all of the selected account data. Table parameter
T_SLBTAB contains a selected list of company codes.

*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_KNA1) LIKE KNA1 STRUCTURE KNA1 OPTIONAL
*” VALUE(I_LFA1) LIKE LFA1 STRUCTURE LFA1 OPTIONAL
*” VALUE(I_SKA1) LIKE SKA1 STRUCTURE SKA1 OPTIONAL
*” TABLES
*” T_KONTAB STRUCTURE RFEPK
*” T_SLBTAB STRUCTURE RFEPB
*”--

Listing 4.4  Event 00001630 Interface

163

New SAP General Ledger Account Line-Item Report Enhancements 4.2

Import parameters I_LFA1, I_KNA1, and I_SKA1 will be filled only if an account
(general ledger account, customer, or vendor) is selected on the report selection
screen; otherwise, these import parameters will be blank.

Listing 4.5 shows the functional interface of event 00001650.

*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_POSTAB) LIKE RFPOS STRUCTURE RFPOS
*” EXPORTING
*” VALUE(E_POSTAB) LIKE RFPOS STRUCTURE RFPOS
*”--

Listing 4.5  Event 00001650 Interface

Both import and export parameters have the same type. When passing the param-
eters to this function module, SAP uses the MOVE-CORRESPONDING logic. Make sure the
first statement in this implementation is E_POSTAB = I_POSTAB to avoid standard
data corruption.

4.2	 New SAP General Ledger Account Line-Item Report
Enhancements

As we mentioned earlier, general ledger accounts have an advanced version of
the line-item report for the new Flexible General Ledger. Its transaction code is
FAGLL03. The obvious difference when compared to the classic report is that a user
can choose the ledger. And, according to ledger they select, the report will pick
items from the corresponding ledger table. Technically, the reports differ in how
they gather item data and output results.

Item selection is done by using functional modules of group FAGL_ITEMS_SELECT:
FAGL_GET_ITEMS_BSAS, FAGL_GET_ITEMS_BSIS, FAGL_GET_ITEMS_BSEG, and some
others. Data output is performed by the FAGL_ITEMS_DISPLAY function module.

FAGL_ITEMS_DISPLAY has similar enhancement capabilities to module FI_ITEMS_DIS-
PLAY, which is used in classical reports; however, instead of some BTE events, the
new module employs a BAdI.

© 2013 by Galileo Press Inc., Boston (MA)164

Enhancements in Reports4

4.2.1	 Header and Footer Output Enhancement

The header and footer enhancement in Transaction FAGLL03 uses the same BTE
event (00001640) as the classical line-item report; after you subscribe to that event,
your subscription will work both in classic and new report versions. See imple-
mentation details in Section 4.1.1, Header and Footer Output Enhancement, earlier
in this chapter.

4.2.2	 Extended Authorization Check

Because report FAGLL03 can be used to display data from different Flexible General
Ledgers, SAP provided a BAdI you can use to implement more complex authoriza-
tion checks for a particular ledger. The BAdI definition FAGL_AUTHORITY_CHECK has
a single interface method, CHECK_LEDGER_AUTHORITY, and supports only one active
implementation (flag Multiple use is turned off). The method has company code,
ledger, ledger group, and activity import parameters and also some others (you can
see the full list of parameters in the definition of the method CHECK_LEDGER_AUTHOR-
ITY of the interface IF_EX_FAGL_AUTHORITY_CHECK. The parameter I_ACTVT (activity)
shows the operation mode (display or change) that the user intends to work with
the ledger in. If you’ve ever worked with authorization, you might know the most
commonly used activities to be protected: 01 for create, 02 for change, 03 for
display, and so on.

If the check fails, the method must raise a classical exception, NO_AUTHORITY (via the
system variable SY-SUBRC). The exception can be raised without an accompanying
message because the calling program ignores it. Also, if you activated the BAdI
implementation, then the standard authorization check for ledger (authorization
object F_FAGL_LDR) is ignored.

Note

A full list of authorized activities can be found in Table TACT. There are almost 200
values.

4.2.3	 Menu Enhancement

Unlike classic line-item reports, Transaction FAGLL03 doesn’t provide BTE events
for menu enhancement. It uses two BAdI definitions: FAGL_ITEMS_MENUE01 and
FAGL_ITEMS_MENUE02, which have the same structure as the classical. Figure

165

New SAP General Ledger Account Line-Item Report Enhancements 4.2

4.9 shows the function codes of the BAdI. Notice that they reference program
SAPLFAGL_ITEMS_DISPLAY.

For these BAdI definitions, you can use exactly the same technique as for the classic
report BAdI. See the details in Section 4.1.3, Menu Enhancement with BAdI.

Figure 4.9  BAdI FAGL_ITEMS_MENUE01 Function Codes

4.2.4	 Enhancing the Output Layout

The new line-item report uses BAdI definition FAGL_ITEMS_CH_DATA for changing
the output of the layout, rather than using BTE events 00001630 and 00001650.
Prior to starting the implementation, you have to extend the dictionary structure
FAGLPOSX, which is used as the ALV output table in a new line-item report. As you
can see in Transaction SE11, structure FAGLPOSX has customer include CI_FAGLPOSX
in its definition. By default, the structure is empty, and you can extend it with an
arbitrary number of fields.

Because SAP doesn’t provide a BAdI or user exit for changing the ALV field catalog
for the line-item report, you should extend the include structure with fields supplied

© 2013 by Galileo Press Inc., Boston (MA)166

Enhancements in Reports4

with thoroughly defined text labels. The BAdI definition has only one method
(CHANGE_ITEMS) with a single changing parameter of table type FAGLPOSX_T.

4.3	 Summary

This chapter provided a brief overview of enhancing reports, rather than a compre-
hensive guide. The SAP Financials functionality provides you with a huge variety of
other reports and reporting tools, including country-specific tax reports, dozens of
banking reports, and many others. Not all of them can be enhanced using user exits
like those we have discussed in this chapter, so sometimes you’re better off copy-
ing the report into your own Z-report and amending it according to your business
needs. Nevertheless, this chapter gave you insight into how to investigate a report’s
enhancement capability, which sometimes can save a lot of time and effort.

In the next two chapters, we’ll discuss the available user exits in the process of
accounting data exchange with external systems.

167

As today’s corporate ERP system landscape becomes more and more
distributed, you have to be prepared for different kinds of data that can flow
to and from external systems. With this in mind, the focus of this chapter is
inbound scenarios in Financial Accounting.

5	 Inbound Scenarios in Financial Accounting

In this chapter, we consider data processing scenarios when the SAP system receives
accounting data from external systems. This can be master data from legacy systems
or posting data from, for example, an external payroll system. This chapter describes
how you can intervene in this process using various user exits.

5.1	 Master Data Migration and Distribution

There could be no SAP ERP implementation project without an initial data migra-
tion procedure. Imagine how painful it would be if a company started its trading
activity by implementing SAP ERP and then entered its existing customers and
vendors one by one. As a rule, the moment a company implements SAP ERP, the
customer/vendor list (which is in some other legacy system) has to be prepared.
There are also scenarios in which accounting master data are loaded from external
systems on a regular basis.

In the following subsections, we’ll discuss several ways to load master data into
an SAP system and how to seamlessly penetrate the standard data flow to address
specific requirements.

5.1.1	 Batch Input

If you are familiar with the SAP Legacy System Migration Workbench (LSMW) and
have completed data migration projects, you probably recognize these standard SAP
programs for the mass uploading of customer and vendor master records: reports
RFBIDE00 and RFBIKR00.

© 2013 by Galileo Press Inc., Boston (MA)168

Inbound Scenarios in Financial Accounting5

Both reports have the same selection screen as shown in Figure 5.1. Input data for
the report must be presented as a flat file located on the application server.

Note

You can also pass a logical file name into the report by passing it through invisible
parameter LDS_NAME, which can be used in a SUBMIT statement. In this case, the value of
the visible file path name parameter is ignored.

Figure 5.1  Selection Screen of Report RFBIDE00

By default, the maximum length of an input file line is 2,000 characters—this is the
length of dictionary structure BDIFIBIWA. If your input file has longer lines, you can
extend structure BDIFIBIWA by using customer include structure CI_BDIFIBIWA.

Keep in mind, however, that structure BDIFIBIWA only defines the length of an input
file line, whereas the actual structure of the data being processed is defined according
to the first 31 characters of the line (see the structure shown in Figure 5.2).

The first character of each file line is a record type, which can take one of three values:
0, 1, or 2. Record type 0 marks the beginning of a session, record type 1 is the
beginning of one customer (or vendor) data for one transaction code, and record
type 2 is a data record. The next 30 characters of a file line contain a dictionary
structure name. For record type 0, the structure name is always BGR00; for record
type 1, the structure name is always BKN00 for customers and BLF00 for vendors.

169

Master Data Migration and Distribution 5.1

Record type (1) Structure name (30) Unstructured data (1969)

Figure 5.2  The Structure of a Flat File Line

In the record with structure BGR00, you can denote the transaction code that will
be used to process the data. The record with structure BKN00 contains the customer
number and corresponding organizational assignment, such as company code, sales
market data, credit control area, and so on. In the record with structure BLF00,
the data contains information for the vendor number, company code, purchasing
organization, and so on.

File lines with record type 2 can contain standard and nonstandard structures. Stan-
dard batch-input structures mainly comply with the following naming convention:
character B followed by one of the master data table names. For example, BKNA1
is a batch-input structure for Table KNA1, BLFA1 is the batch-input counterpart for
LFA1, and so on.

Note

The full list of all standard batch-input structures and supported transactions can be
found in SAP online help for reports RFBIDE00 and RFBIKR00.

In the next subsection, you’ll see learn to extend data and amend its processing
using BAdIs. You’ll also see a step-by-step example of loading extended data with
a standard SAP program.

Data Enhancement

You can enhance batch-input data either by defining your own fields in the corre-
sponding customer include, which you can find in all standard batch-input structures
(e.g., CI_BKNA1 in BKNA1), or by defining your own data structures.

If you choose the second option, follow the same conventions found in the standard
structure:

EE The first two fields of the customer include should be the same as in the standard
structure (STYPE and TABNAME).

EE All fields must be characters (no numbers).

© 2013 by Galileo Press Inc., Boston (MA)170

Inbound Scenarios in Financial Accounting5

Note

To make the customer-defined batch-input structure available in SAP LSMW, you must
insert a corresponding entry in the customizing table SXDA2.

Using BAdIs

If your custom-defined fields are part of an additional screen layout (see Chapter 2,
Master Data Enhancements), then you have to apply user exits to make the system
process additional data in customer or vendor loading reports.

Customer loading report RFBIDE00 uses the following BAdI definitions and
methods:

EE Definition: CUSTOMER_ADD_DATA

EE Method CHECK_ADD_ON_ACTIVE is called in the initialization phase of the report.
Other BAdI methods are called only if at least one add-on is active.

EE Definition: CUSTOMER_ADD_DATA_BI

EE Method CHECK_DATA_ROW is called for any nonstandard file line with record
type 2 and an unknown structure name. The method can be used to check
the input contents for nonstandard structures.

EE Method FILL_FT_TABLE_USING_DATA_ROWS is called at the end of transactions
processing (only for Transactions XD01 and XD02). The method can be used
to amend or extend generated batch-input screens and field sequences to
incorporate add-on screens and fields.

Vendor loading report RFBIKR00 uses the following BAdI definitions: VENDOR_ADD_
DATA and VENDOR_ADD_DATA_BI. Method names and their purposes are the same as
in report RFBIDE00; and logical method FILL_FT_TABLE_USING_DATA_ROWS is only
called for Transactions XK01 and XK02.

Example

To illustrate the enhancement usage in our IDES system, let’s incorporate the
example from Chapter 2, where we enhanced customer master data, into the
standard loading program, RFBIDE00. We extended the company code view of the

171

Master Data Migration and Distribution 5.1

customer master data by an additional field: Custom Account Class (with technical
name KNB1-ZZCUST_CLASS).

First, we extended the dictionary structure (BKNB1) by defining the customer include
(CI_BKNB1). As a result, the BKNB1 definition in Transaction SE11 should look like
Figure 5.3.

Figure 5.3  Extended BKNB1 Dictionary Structure

When preparing the example for Chapter 2, we implemented BAdI CUSTOMER_ADD_
DATA. Now we need to use BAdI definition CUSTOMER_ADD_DATA_BI. Because we
haven’t created our own batch-input structure, but extended a standard structure
instead, we don’t need to implement the CHECK_DATA_ROW method. We do need
to code an addition to the screen and field sequence, which will save our data
into the customer master record. To do this, we need to examine how the screen
sequence might look by using an old batch-input recording, which can be found
in Transaction SHDB.

© 2013 by Galileo Press Inc., Boston (MA)172

Inbound Scenarios in Financial Accounting5

We record the following actions of Transaction XD02 with the following steps:

1.	Enter the customer number and company code.

2.	Select the enhanced screen layout (defined in Chapter 2).

3.	Change the value in the CustAccClass field (no matter from which to which;
we just need a value change).

4.	Save.

Figure 5.4 shows the combined sequence of screenshots of these steps.

Figure 5.4  Recorded Screen Sequence of Transaction XD02

173

Master Data Migration and Distribution 5.1

The result of the recording is shown in Figure 5.5.

Figure 5.5  The Recording of Transaction XD02

As you analyze the recording, you see that on the starting data screen SAPMFD02/200,
we executed function code AO05, which has taken us into the enhanced screen lay-
out. There we entered a value of 3 into the field KNB1-ZZCUST_CLASS and clicked
Save (function code UPDA).

Now we are ready to implement the code of method FILL_FT_TABLE_USING_DATA_​
ROWS.

© 2013 by Galileo Press Inc., Boston (MA)174

Inbound Scenarios in Financial Accounting5

Figure 5.6  The Interface of Method FILL_FT_TABLE_USING_DATA_ROWS

Figure 5.6 shows the interface of method FILL_FT_TABLE_USING_DATA_ROWS. You can
see that we have current BKN00 data (with customer number and other organizational
assignment data) as input parameter I_BKN00; we also have all file lines related to
the current transaction in input parameter IT_DATA_ROWS. Finally, we have one
export table typed parameter, ET_FT, which we will amend according to our logic.
ET_FT has line type of BDCDATA structure, which is a well-known structure used in
batch-input statement CALL TRANSACTION USING.

The algorithm should do the following:

EE Find the first entry of structure BKNB1 in the file data.

EE Insert function code AO05 into the previous screen: BDC data.

EE Start a new screen in BDC data.

EE Set new field values according to BKNB1 contents that were found.

Always keep in mind that there can be other active BAdI implementations, so you
shouldn’t include any function codes in the batch input because this can end the
transaction. In our example, we don’t insert the function code UPDA, which is seen
in our sample recording (refer back to Figure 5.5).

Listing 5.1 shows the source code of our method implementation.

METHOD if_ex_customer_add_data_bi~fill_ft_table_using_data_rows.

 FIELD-SYMBOLS: <wa> TYPE bknb1.

 DATA: ft TYPE bdcdata.

175

Master Data Migration and Distribution 5.1

 LOOP AT it_data_rows ASSIGNING <wa> CASTING.

 CHECK <wa>-stype = ‘2’ AND <wa>-tbnam = ‘BKNB1’.

* Insert function code to select Enhanced screen layout

* This will be added to the last processed screen in BDC data

 CLEAR ft.

 ft-fnam = ‘BDC_OKCODE’.

 ft-fval = ‘=AO05’.

 APPEND ft TO et_ft.

* Start new screen

 CLEAR ft.

 ft-program = ‘SAPMF02D’.

 ft-dynpro = ‘4000’.

 ft-dynbegin = ‘X’.

 APPEND ft TO et_ft.

* Enter field value on the custom defined screen

 CLEAR ft.

 ft-fnam = ‘KNB1-ZZCUST_CLASS’.

 ft-fval = <wa>-zzcust_class.

 APPEND ft TO et_ft.

 EXIT.

 ENDLOOP.

ENDMETHOD.

Listing 5.1  Method FILL_FT_TABLE_USING_DATA_ROWS Source

After activating the BAdI implementation, we can now test the new fields with a small
SAP LSMW project. The goal of this project is to update field KNB1-ZZCUST_CLASS
using the batch-input loading program RFBIDE00. After defining the appropriate
target object and source structure, you can see in the SAP LSMW field-mapping
step that our field is included in the target structure (see Figure 5.7). Note that all
uninitialized fields are turned off to make the view more compact.

© 2013 by Galileo Press Inc., Boston (MA)176

Inbound Scenarios in Financial Accounting5

Figure 5.7  LSMW Field Mapping View for the Customer Master

The Create Batch Input Session step in the SAP LSMW project is actually a call
of the program RFBIDE00. We tested it with only one record in the input file to
update customer T-L63A02 in company code 1000. Now change the CustAccClass
field to 3. After generating the batch-input session, we can inspect it in Transaction
SM35. Figure 5.8 shows the screen list of the session with an opened field value
list. Our added field is in its place.

177

Master Data Migration and Distribution 5.1

Figure 5.8  Batch-Input Session Analysis in Transaction SM35

5.1.2	 HR Master Data

In some HR payroll instances, an employee has his own HR master record, which
generates a corresponding vendor master record or customer master record for
that employee in the financials department of the company. From the formal
accounting point of view, when the company pays the salary to that employee, he
should be treated as a company vendor because that employee sells his services
to the company (in the form of an everyday job). If HR Payroll and FI are installed
as separate systems, you must set up a task of regularly distributing HR employee
data into an FI system to form vendor or customer master records.

© 2013 by Galileo Press Inc., Boston (MA)178

Inbound Scenarios in Financial Accounting5

In brief, the standard process of HR data distribution, which is based on ALE
(application link enabling) technology, looks as follows:

1.	Several structures of employee data (called infotypes) from the external HR system
are copied into the FI system, in the form of an IDoc (depending on the HR
system version, it can be an IDoc type from HRMD_A01 to HRMD_A07).

2.	The receiving FI system regularly runs report RPRAPA00, which prepares the
locally available HR data for loading with the standard report RFBIKR00.

3.	Inside report RPRAPA00, a BAdI definition BADI_EXITS_RPRAPA00 is used to
intercept the standard logic when preparing a data file for the following run of the
report RFBIKR00. The list of available BAdI methods is shown in Table 5.1.

Method Description

SET_VALUES_FOR_BLFBW Exit for BLFBW: Vendor master, withholding tax types

SET_VALUES_FOR_BLF00 Exit for BLF00: Vendor master

SET_VALUES_FOR_BLFA1 Exit for BLFA1: Vendor master, general data part 1

SET_VALUES_FOR_BLFBK Exit for BLFBK: Vendor master, bank details

SET_VALUES_FOR_BLFB1 Exit for BLFB1: Vendor master, company code data

SET_VALUES_FOR_BLFB5 Exit for BLFB5: Vendor master, dunning data

SET_VALUES_FOR_BGR00 Exit for BGR00: Batch-input structure for session data

Table 5.1  Interface Methods of the BAdI Definition BADI_EXITS_RPRAPA00

Each method has an employee number (PERNR) as an input parameter and a respec-
tive batch-input structure as a changing parameter. The structure name is clearly
shown by the method name.

Because report RPRAPA00 works on the local HR data, you can use standard HR
functionality to access employee infotypes. All the BAdI methods are called in the
end of each employee number processing.

5.1.3	 ALE/IDoc

The batch-input data loading techniques discussed earlier are based on a file as a
data carrier. This is a somewhat outdated technology, and while it is robust and

179

Master Data Migration and Distribution 5.1

stable, it’s less flexible and less secure compared to ALE/IDoc technology. IDoc
processing logic is completely separated from the data transferring media, which
is much more suitable to the modern distributed environments with its variety of
data transferring protocols. In essence, ALE/IDoc technology is more welcome in
modern integration projects involving B2B (business to business), A2A (application
to application), and mobile scenarios.

When it comes to making a decision on what type of technology to employ in an
integrating project of almost any nature, we recommend choosing IDocs over files.
ALE/IDoc technology is highly configurable, and depending on corporate-specific
requirements, you can completely intercept the IDoc processing of any individual
type.

The Structure of an IDoc in a Nutshell

The structure of an IDoc is identified by its basic type, which is an ordered set of seg-
ments. For simplicity, the notion of an IDoc segment can be treated as an equivalent of
the dictionary structure. Basic type defines not only a simple order of its segments but
also their hierarchy relations, cardinality, and necessity. In other words, the basic type
defines the syntax of IDoc, which is controlled by the runtime ALE system layer. The
IDoc basic type structure can be displayed using Transaction WE30.

For the sake of simplicity, we can also say that a pair of objects—logical message code
and basic type—together define IDoc processing logic via assignment to a specific ABAP
function module, workflow template, or task. These assignments are stored in configura-
tion table EDIFCT, which is accessible via Transaction WE57.

SAP delivers the following logical messages for master data distribution via ALE:
CREMAS and CRECOR for vendors, and DEBMAS and DEBCOR for customers. Figure 5.9
shows the IDoc processing module configuration for customer-related messages
and IDoc types.

If you look into the default IDoc configuration table EDIFCT (via Transaction WE57),
you can see that standard processing logic for inbound IDoc transferring customer
and vendor master data is hidden in two function modules: IDOC_INPUT_DEBI-
TOR and IDOC_INPUT_CREDITOR. These function modules are assumed to process
IDoc basic types from CREMAS01 to CREMAS05, and from DEBMAS01 to DEBMAS06,
CRECOR01, and DEBCOR01. In this notation, the numeric suffix is the version of the
IDoc structure.

© 2013 by Galileo Press Inc., Boston (MA)180

Inbound Scenarios in Financial Accounting5

Figure 5.9  The Contents of Table EDIFCT

Both function modules work the same way. They first analyze the system type; if
it’s an ERP system, the function modules call an ERP-specific function: ERP_IDOC_
INPUT_CREDITOR for a vendor and ERP_IDOC_INPUT_DEBITOR for a customer. There
is also a function call for a standalone HR system, but it’s quite simple. Because HR
doesn’t need any advanced customer or vendor master data manipulations, you’ll
find just a direct update of the corresponding tables.

The main secret of standard IDoc processing logic is that it updates or creates
individual master record by means of batch input. If you dive into the source code
of ERP_IDOC_INPUT_DEBITOR or ERP_IDOC_INPUT_CREDITOR, you’ll find the corre-
sponding CALL TRANSACTION statement. In a way, they repeat the logic of reports
RFBIDE00 and RFBIKR00; but instead of a flat file, these functions process IDocs,
and each segment can be treated as an equivalent of a file line. You can also see that

181

Master Data Migration and Distribution 5.1

after processing IDoc segments, the function gathers information into an internal
table of structure BDIFIBIWA.

Note

In IDoc processing, SAP provides calling moments for the same BAdI definition as in
RFBIDE00 and RFBIKR00.

Next, we’ll discuss working with IDoc data structures—segments—and how you
can affect the processing logic in standard SAP functions.

Working with Segments

The structure of the IDoc type you are planning to process can be displayed in
Transaction WE30. Figure 5.10 shows the structure of IDoc basic type CREMAS05.
As you can see, there are three levels of segment hierarchy.

Figure 5.10  The Structure of IDoc Type CREMAS05

© 2013 by Galileo Press Inc., Boston (MA)182

Inbound Scenarios in Financial Accounting5

By double-clicking on an arbitrary segment name, you can drill down to the seg-
ment editor where you can see the list of segment fields. You can see an example
of segment structure in the segment editor in Figure 5.11.

Figure 5.11  The Structure of the Segment E1LFA1M

When you develop a brand new segment, the final point of the development is
the act of releasing the segment. At the moment of release, the system generates
a dictionary structure with the same name and all of the segment’s fields, which
means that the segment can be used officially. All standard segments also have a
dictionary structure of the same name. So if an IDoc type defined in your system
contains a segment E1LFA1M, you can declare a variable in your program of the
type E1LFA1M.

IDoc has a single primary key field—its 16-digit number. We recommend accessing
an individual IDoc by the standard function module IDOC_READ_COMPLETELY. Besides
the control data (which are outside of our current discussion), the function returns
all of the IDoc segments in the form of an internal table of structure, EDIDD.

183

Master Data Migration and Distribution 5.1

Each record contains exactly one segment; the segment’s name is stored in field
SEGNAM, while segment data are located in an unstructured field, SDATA. An example
of a code snippet for IDoc segment processing is provided in Listing 5.2.

DATA: lt_edidd TYPE TABLE OF edidd,
 IDoc_number TYPE edidc-docnum,
 ls_e1lfa1m_segment TYPE e1lfa1m,
 ls_e1lfb1m_segment TYPE e1lfb1m.

FIELD-SYMBOLS: <edidd> TYPE edidd.

CALL FUNCTION ‘IDOC_READ_COMPLETELY’
 EXPORTING
 document_number = IDoc_number
 TABLES
 int_edidd = lt_edidd
 EXCEPTIONS
 OTHERS = 3.

IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE sy-msgty NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
ENDIF.

LOOP AT lt_edidd ASSIGNING <edidd>.
 CASE <edidd>-segnam.
 WHEN ‘E1LFA1M’.
 ls_e1lfa1m_segment = <edidd>-sdata.
* Processing...

 WHEN ‘E1LFB1M’.
 ls_e1lfb1m_segment = <edidd>-sdata.
* Processing...

 WHEN OTHERS.
* Processing non-standard segments...

 ENDCASE.
ENDLOOP.

Listing 5.2  IDoc Segment Processing Code

© 2013 by Galileo Press Inc., Boston (MA)184

Inbound Scenarios in Financial Accounting5

Note that you can freely use direct assignment between unstructured field EDIDD-
SDATA and the structured field of the segment despite the Unicode. This is possible
because IDoc segment structure contains only character fields; EDIDD-SDATA is
character typed as well.

Available BAdIs in Customer Data IDoc Processing

SAP standard batch-input program RFBIDE00 is called from within the function
module ERP_IDOC_INPUT_DEBITOR. First, it calls method CHECK_ADD_ON_ACTIVE of
BAdI definition CUSTOMER_ADD_DATA. All other methods of the BAdI definition
CUSTOMER_ADD_DATA_BI are only called if there is at least one active add-on.

During the IDoc processing, function ERP_IDOC_INPUT_DEBITOR invokes the follow-
ing methods of the BAdI definition CUSTOMER_ADD_DATA_BI:

EE PASS_NON_STANDARD_SEGMENT	
This method is called when the system encounters an unknown segment during
the main loop of IDoc segments processing. This call allows you to convert a
nonstandard segment into an internal structure for later processing. The segment
name and segment data are passed to the method as import parameters.

EE MODIFY_BI_STRUCT_FROM_STD_SEG	
This method is called after fulfilling all standard processing for each standard
segment. The method uses the segment name and segment data as import param-
eters, and one changing parameter with an already known structure, BDIFIBIWA.
By the moment of the call, structure BDIFIBIWA is filled with standard values,
and you can change it according to your requirements.

EE FILL_BI_TABLE_WITH_OWN_SEGMENT	
This method is called when all standard batch-input data are saved into the inter-
nal table of structure BDIFIBIWA. This method has a changing table parameter with
this structure and an import parameter of dictionary structure CUSTOMER_ORG_DATA.
When this method is called, you should process the data that were prepared
earlier and saved by the PASS_NON_STANDARD_SEGMENT method.

EE CHECK_DATA_ROW	
When all segments are processed and all of the data gathered into the batch-
input table of structure BDIFIBIWA, the system checks the data before starting the
batch input. This method is called for each line of batch-input data if it contains
the name of a nonstandard structure. The method has import parameter of
structure BDIFIBIWA and a flag parameter for passing the data check status (“X”

185

Master Data Migration and Distribution 5.1

for success and a blank space for failure). If some of the data have not passed
the check, the method can return an error message through the corresponding
export parameters.

EE FILL_FT_TABLE_USING_DATA_ROWS

This method is called just before calling the transaction in batch-input mode.
It allows the user to make final alterations into the batch-input screen and field
value sequence. Note that this method is only called if the transaction to be
called is either XD01 or XD02. This method has a changing table parameter
typed with structure BDCDATA.

Available BAdIs in Vendor Data IDoc Processing

Function module ERP_IDOC_INPUT_CREDITOR works with BAdIs in a slightly differ-
ent way: It calls BAdI VENDOR_ADD_DATA and method CHECK_ADD_ON_ACTIVE after
gathering information into an intermediary internal table of structure BDIFIBIWA,
instead of at the beginning of IDoc processing.

The following methods of BAdI definition VENDOR_ADD_DATA_BI are called during
the processing of the vendor master IDoc:

EE PASS_NON_STANDARD_SEGMENT

EE MODIFY_BI_STRUCT_FROM_STD_SEG

EE FILL_BI_TABLE_WITH_OWN_SEGMENT

EE CHECK_DATA_ROW

EE FILL_FT_TABLE_USING_DATA_ROWS

Enhancement Spots

Function group VV02 has two entries of enhancement spot ES_SAPLVV02CORE. One
source code plug-in entry of this spot is located in the top include of the function
group and allows you to use your own includes here. Another spot entry can be
found at the beginning of the function code ERP_IDOC_INPUT_DEBITOR. On the vendor
side, there is an enhancement spot—ES_SAPLKD02—with the same functionality.

Function Module Exits

There are also components of old-styled function module exit VSV00001, which
you can examine in Transaction SMOD. Customer function EXIT_SAPLKD02_001 is
called after the vendor data IDoc is completely processed and allows you to save

© 2013 by Galileo Press Inc., Boston (MA)186

Inbound Scenarios in Financial Accounting5

additional data in the database. Customer function EXIT_SAPLVV02_001 has the same
purpose; it is called after processing the customer data IDoc.

5.2	 Postings Inbound Scenarios

Now let’s examine how accounting document data can come from the external
world and what we can do with it.

5.2.1	 Batch-Input or Direct Input

As with master data, an initial stage of an SAP ERP implementation project virtually
always requires loading initial accounting transaction data. A traditional tool for this
activity is the standard SAP report RFBIBL00. Input data for the report are provided
in the form of a flat file located on the application server. The report is suitable for
use with SAP LSMW, which effectively hides all the file preparation issues.

Internally, the report uses function modules of group FIPI, which are listed in
Table 5.2.

Name Description

POSTING_INTERFACE_CLEARING Post with clearing (FB05) using internal posting
interface.

POSTING_INTERFACE_DOCUMENT Post document using the internal posting interface.

POSTING_INTERFACE_END The ending function of the group. Should be called
in the end of the process.

POSTING_INTERFACE_RESET_CLEAR Reset clearing via posting interface.

POSTING_INTERFACE_REVERSE_DOC Cancel document via posting interface.

POSTING_INTERFACE_START Initial information for internal accounting interface.

Table 5.2  FIPI Function Group Modules

These functions actually make postings through batch input by generating sessions
or calling a transaction directly. The function modules also have detailed system
documentation. Unfortunately, report RFBIBL00 does not contain a user-exit call,
although you can rely on the user exits available inside the transactions that are
called during processing.

187

Postings Inbound Scenarios 5.2

5.2.2	 Payroll Results

Note that the payroll result posting interface is fully equipped with specific user exits.
However, it’s worth seeing the overall process outline so that you can understand
where and when the process should (or should not) be intercepted, depending on
your business requirements.

If the company has SAP HR Payroll implemented, then in every payroll period
(weekly or monthly), there must be an interface running that posts payroll results
to the Financials department. SAP recommends implementing HR as a separate
system to improve data security because payroll data are among the most sensitive
corporate data.

If you are implementing a payroll results posting from SAP HR into SAP FI, then
in the end, the posting will be performed with the same tools.

The whole process of HR payroll posting looks like this:

1.	The responsible person in HR creates a payroll posting run with report RPCIPE00.
The report creates a preliminary posting document stored in Tables PPDHD,
PPDIT, and others.

2.	Someone then checks and approves all of the resulting posting documents (they
are not accounting documents) by editing particular payroll runs with Transac-
tion PCP0.

3.	Finally, someone runs report RPCIPP00 to transfer values into accounting.

The last step can be performed either via ALE/IDoc interfaces (if HR Payroll works
as a separate system), or locally—by direct call of an accounting BAPI. By default,
all of HR Payroll IDocs are processed in the receiving system by the same BAPI.
Let’s trace the chain.

The HR system generates three types of postings:

EE Employee expenses	
For example, travel and accommodation when on a business trip.

EE Employee vendor items	
For example, an employee can be treated as a corporate vendor or service pro-
vider to justify salary payment; thus the document is generated as an Account
Payables item.

© 2013 by Galileo Press Inc., Boston (MA)188

Inbound Scenarios in Financial Accounting5

EE Employee customer items	
If an employee has debts that are not settled, he might appear in the role of a cor-
porate customer; the document is generated as an Account Receivables item.

If an HR Payroll component is implemented as a separate system, then it generates
three types of IDocs: ACC_EMPLOYEE_PAY02, ACC_EMPLOYEE_REC02, and ACC_EMPLOYEE_
EXP02. In the receiving system, these IDocs are linked by default via the ALE/
BAPI-generated interface to the following function modules:

EE IDOC_INPUT_ACC_EMPLOYEE_EXP for employee expenses

EE IDOC_INPUT_ACC_EMPLOYEE_PAY for employee payments

EE IDOC_INPUT_ACC_EMPLOYEE_REC for employee debts

The accounting documents are generated with BAPI calls:

EE BAPI_ACC_EMPLOYEE_EXP_POST for employee expenses

EE BAPI_ACC_EMPLOYEE_PAY_POST for employee payments

EE BAPI_ACC_EMPLOYEE_REC_POST for employee debts

Finally, each of the BAPIs call function modules AC_DOCUMENT_CREATE and AC_DOCU-
MENT_POST as a low-level accounting interface utility. Thus, you can employ any
user exit (BAdI or BTE) appearing in the AC_DOCUMENT_CREATE function module (see
Chapter 3, Posting to Accounting), including substitutions and validations.

At the call point of a user exit during the document generation, you can distinguish
SAP standard HR Payroll postings from any others by the contents of the field
BKPF-GLVOR:

EE HRP1 for employee expenses

EE HRP3 for employee payments (Account Payables)

EE HRP2 for employee debts (Accounts Receivable)

5.2.3	 Postings via IDoc

The SAP system delivers dozens of IDoc types to be used for posting different fla-
vors of accounting documents: direct posting to a general ledger account, posting
of incoming vendor invoice, and so on. You can find corresponding IDoc types in
Transaction WE30 (Executing the Search Help with Mask ACC*). However, if you
look into the processing function modules, you’ll notice that they aren’t equipped
with user exits. If you thoroughly trace the chain of calls, you’ll see that this chain

189

Postings Inbound Scenarios 5.2

is ended at the same function modules mentioned in the previous section: AC_DOCU-
MENT_CREATE and AC_DOCUMENT_POST. Thus, you should rely on already-known user
exits discussed in Chapter 3.

5.2.4	 Electronic Bank Statement

The process of loading a bank statement file consists of two phases: importing the
bank statement file in Transaction FF_5, and posting the bank statement through
Transaction FEBP.

Importing the Bank Statement File

Loading program RFEBKA00, which is linked to Transaction FF_5, parses incoming
bank files according to a selected format, such as Multicash or SWIFT MT940, which
are widely used in bank communication. Each individual file format is parsed in
an external program, although the code in report RFEBKA00 that is responsible for
choosing the format parsing program is quite static; there is just a CASE statement
with no configuration.

However, if you look into the source code of format SWIFT MT940 parsing routine
program RFEKA400, you can discover an old-fashioned user exit, EXIT_RFEKA400_001,
belonging to function module exit FEB00004. The enhancement can be used for
preprocessing raw file data, which is passed to the user exit in the form of a table
parameter with a length of 512 unstructured lines. Listing 5.3 shows the interface
of the user exit.

FUNCTION EXIT_RFEKA400_001.
*”--
””Lokale Schnittstelle:
*” TABLES
*” T_RAW_DATA STRUCTURE RAW_DATA
*” EXCEPTIONS
*” ERROR_OCCURED
*”--

INCLUDE ZXF01U06 .

ENDFUNCTION.

Listing 5.3  EXIT_RFEKA400_001 Interface

© 2013 by Galileo Press Inc., Boston (MA)190

Inbound Scenarios in Financial Accounting5

You can also see that EXIT_RFEKA400_001 has one exception, which signals the host
program to stop processing the file any further.

Report RFEBKA00 gathers parsed data into the following bank statement database
tables:

EE FEBKO (electronic bank statement header records)

EE FEBEP (electronic bank statement line items)

EE FEBRE (reference record for electronic bank statement line item)

Posting the Bank Statement

When you link report RFEBKA30 to Transaction FEBP, it interprets data in bank
statement tables and makes an accounting posting. A bank statement is a list of
operations of what the bank did with your money on your behalf, such as company
payments to vendors, bank charges for its services, interest payments, payments from
your customers, and so on. All of these operations should be correctly reflected in
the company’s financial accounting to make sure that the money flow is consistent
and correct.

At the same time, the bank’s statement can use different identification for the same
objects presented in your system; also, it’s possible that some valuable data in the
context of your SAP ERP system may be omitted in the statement for one reason
or another. During the interpretation phase, report RFEBKA30 is trying to fill these
gaps automatically, for example, to determine the business partner number for the
bank transaction or even more important to determine the clearing reference (e.g.,
payment against invoice) document numbers.

Report RFEBKA30 actually is only a wrapper for another report, RFEBBU10, which
performs the interpretation. The algorithm runs through header-item relation of
two tables, FEBKO and FEBEP. For each FEBEP internal loop run, the report calls
different user exits that can help discover missing statement data.

Now let’s walk through the available BTEs you can employ during the processing
of a bank statement.

BTE 00002810 and Process 00002820

First, the system calls BTE 00002810 (you can see its interface in Listing 5.4). The
event has a pair of parameters for the header record and for the line item of the
bank statement that is being processed. The parameter with suffix EXT contains

191

Postings Inbound Scenarios 5.2

fields with external data (records that were sent by the bank), whereas suffix INT
signifies that this data is internal. As a result of its run, each function module that
is subscribed to the 00002810 event must return a registration flag in one of two
export parameters: E_REGISTER_AREA_1 or E_REGISTER_AREA_2.

*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_FEBKO_EXT) LIKE FEBKOXT_BF STRUCTURE FEBKOXT_BF
*” VALUE(I_FEBEP_EXT) LIKE FEBEPXT_BF STRUCTURE FEBEPXT_BF
*” VALUE(I_FEBKO_INT) LIKE FEBKOIN_BF STRUCTURE FEBKOIN_BF
*” VALUE(I_FEBEP_INT) LIKE FEBEPIN_BF STRUCTURE FEBEPIN_BF
*” VALUE(I_TESTRUN) TYPE XFLAG OPTIONAL
*” EXPORTING
*” VALUE(E_REGISTER_AREA_1) LIKE BOOLE-BOOLE
*” VALUE(E_REGISTER_AREA_2) LIKE BOOLE-BOOLE
*” VALUE(E_SUPPR_STD_AREA_1) LIKE BOOLE-BOOLE
*” VALUE(E_SUPPR_STD_AREA_2) LIKE BOOLE-BOOLE
*” TABLES
*” T_FEBRE STRUCTURE FEBRE_BF
*” T_FEBCL STRUCTURE FEBCL_BF
*”--

Listing 5.4  The Interface of BTE 00002810

Note that subscribers to event 00002810 are called from within function FEB_OPEN_
FI_CALL_1. This function allows only one application ID to be registered for each
of the two areas. The application ID in the BTE framework is used to distinguish
SAP internal and partner application areas. Customer-defined P&S modules and
processes can have blank application IDs. Therefore, you should make sure that
for this particular line item of the bank statement, your function is the only one
registered, or an error will be reported. Another pair of event flag parameters,
E_SUPPR_STD_AREA_1 and E_SUPPR_STD_AREA_1, will prevent execution of interpreta-
tion algorithm if they are assigned X.

Process 00002820 is called just after the event and only for registered application
IDs. You can see the process interface in Listing 5.5. Note that there are export
parameters to allow changing values in bank statement headers and items. Note
that your changed data will be taken into account only if you assign X to the export
parameter E_UPDATE_FEB.

© 2013 by Galileo Press Inc., Boston (MA)192

Inbound Scenarios in Financial Accounting5

*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_FEBKO_EXT) LIKE FEBKOXT_BF STRUCTURE FEBKOXT_BF
*” VALUE(I_FEBEP_EXT) LIKE FEBEPXT_BF STRUCTURE FEBEPXT_BF
*” VALUE(I_FEBKO_INT) LIKE FEBKOIN_BF STRUCTURE FEBKOIN_BF
*” VALUE(I_FEBEP_INT) LIKE FEBEPIN_BF STRUCTURE FEBEPIN_BF
*” VALUE(I_TESTRUN) TYPE XFLAG OPTIONAL
*” EXPORTING
*” VALUE(E_FEBKO_EXT) LIKE FEBKOXT_BF STRUCTURE FEBKOXT_BF
*” VALUE(E_FEBEP_EXT) LIKE FEBEPXT_BF STRUCTURE FEBEPXT_BF
*” VALUE(E_FEBKO_INT) LIKE FEBKOIN_BF STRUCTURE FEBKOIN_BF
*” VALUE(E_FEBEP_INT) LIKE FEBEPIN_BF STRUCTURE FEBEPIN_BF
*” VALUE(E_UPDATE_FEB) LIKE BOOLE-BOOLE
*” TABLES
*” T_FEBRE STRUCTURE FEBRE_BF
*” T_FEBCL STRUCTURE FEBCL_BF
*”--

Listing 5.5  The Interface of BTE Process 00002820

Besides header and item data, you can also fill in clearing data in table parameter
T_FEBCL.

Figure 5.12  The Signature of Method CHANGE_DATA of BAdI FIEB_CHANGE_BS_DATA

BAdI Definitions

Progressing to business transaction events and processes, the system calls BAdI
definition FIEB_CHANGE_BS_DATA and method CHANGE_DATA. Figure 5.12 shows the

193

Postings Inbound Scenarios 5.2

interface (or signature) of the method. Notice that the method has three changing
parameters: C_FEBKO and C_FEBEP for the header and item of the bank statement,
and table parameter T_FEBCL for clearing data from the statement.

The method can also return error code and error message attributes to be reported
in the log and prevent the statement from being processed further.

Another BAdI definition, FIEB_CHANGE_STATEMNT, is called after all of the inter-
pretation is executed, and the system has done everything it can. You can see the
interface of the BAdI method CHANGE_DATA in Figure 5.13.

Figure 5.13  The Signature of Method CHANGE_DATA of the BAdI FIEB_CHANGE_STATEMNT

Customer-Defined Interpretation Algorithm

After calling BTEs and the first BAdI, the system runs the interpretation proper. Each
bank statement item can have its own interpretation algorithm, which is defined
by the field FEBEP-INTAG value. Therefore, the individual item algorithm can be set
during a user exit run: either BTE or BAdI.

A full list of interpretation algorithm numbers and descriptions can be found in
the INTAG_EB domain fixed values. INTAG_EB is numeric 3. It is assumed that all
SAP system algorithms belong to the range of INTAG values from 000 to 899, and
everything above 900 is a customer-defined interpretation.

© 2013 by Galileo Press Inc., Boston (MA)194

Inbound Scenarios in Financial Accounting5

To implement a customer-defined interpretation, you have to create a function
module with a predefined name structure—Z_FIEB_NNN_ALGORITHM—where NNN is
the algorithm number.

This function module must have the interface shown in Listing 5.6.

FUNCTION Z_FIEB_901_ALGORITHM.
*”--
””Local Interface:
*” IMPORTING
*” REFERENCE(I_NOTE_TO_PAYEE) TYPE STRING
*” VALUE(I_COUNTRY) TYPE T001-LAND1
*” TABLES
*” T_AVIP_IN STRUCTURE AVIP
*” T_AVIP_OUT STRUCTURE AVIP
*” T_FILTER1
*” T_FILTER2
*”--

ENDFUNCTION.

Listing 5.6  Sample Interpretation Algorithm Function

Based on the payment note passed to the function in parameter I_NOTE_TO_PAYEE
and document references in T_AVIP_IN, the algorithm is expected to produce
reasonable results in table structure T_AVIP_OUT, which has the structure of the
payment advice line item. Table structure T_AVIP_OUT is then used to update the
clearing reference data for the statement item.

Function Module Exit

After the interpretation algorithm and just before the second BAdI call, the system
invokes a component (function module) EXIT_RFEBBU10_001 of the old-fashioned
function module exit FEB00001. Its interface is shown in Listing 5.7.

FUNCTION EXIT_RFEBBU10_001.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_FEBEP) LIKE FEBEP STRUCTURE FEBEP
*” VALUE(I_FEBKO) LIKE FEBKO STRUCTURE FEBKO
*” VALUE(I_TESTRUN) TYPE XFLAG
*” EXPORTING
*” VALUE(E_FEBEP) LIKE FEBEP STRUCTURE FEBEP

195

Summary 5.3

*” VALUE(E_FEBKO) LIKE FEBKO STRUCTURE FEBKO
*” VALUE(E_MSGTEXT) LIKE FEBMKA-MESSG
*” VALUE(E_MSGTYP) LIKE FEBMKA-MSTYP
*” VALUE(E_UPDATE) LIKE FEBMKA-MSTYP
*” TABLES
*” T_FEBCL STRUCTURE FEBCL
*” T_FEBRE STRUCTURE FEBRE
*”--

 INCLUDE ZXF01U01.

ENDFUNCTION.

Listing 5.7  The Interface of EXIT_RFEBBU10_001

This is another point where you can intercept the standard flow of the bank state-
ment processing.

5.3	 Summary

In this chapter, we discussed several inbound interfaces of Financial Accounting,
which cover some of the general corporate activities. Thanks to the SAP design in
all of these scenarios, you can find ways to seamlessly tailor the standard process
for specific corporate needs.

In the next chapter, you’ll see what user-exit techniques are available for develop-
ment in outbound scenarios when the system sends accounting data to external
systems.

© 2013 by Galileo Press Inc., Boston (MA)

197

To preserve symmetry, there must be outbound interfaces in Financial
Accounting: Communication with the outside world cannot be just one-way.
This chapter covers the methods of communicating financial data to external
systems.

6	 Outbound Scenarios in
Financial Accounting

In this chapter, we’ll consider several important scenarios during which data from
Financial Accounting (FI) are transferred to external systems, including distribut-
ing master data, sending dunning notifications, and using the payment program.
Master data distribution occurs when implementing an external payroll system;
dunning procedures are common in companies selling their products or services;
and, finally, no company can do without a bank account, and the communication
with banks is fulfilled using the payment program.

6.1	 Master Data Distribution

In this section, we’ll discuss some techniques for extracting (or sending) accounting
master data to external systems. An example of such a scenario is extracting legacy
data from an old SAP system when a company is upgrading. Various scenarios also
involve centralized SAP NetWeaver Master Data Management (SAP NetWeaver
MDM), when a master data change is initiated in the accounting system and must
be distributed over the entire system landscape.

Let’s start by discussing two techniques of accounting master data distribution:
generating files for batch input and using ALE/IDoc technology.

6.1.1	 Batch Input

The programs mentioned in Chapter 5, Inbound Scenarios in Financial Accounting,
for loading FI master data with a batch-input technique have counterpart programs

© 2013 by Galileo Press Inc., Boston (MA)198

Outbound Scenarios in Financial Accounting6

that export data in a batch-input format. Table 6.1 shows these three reports, which
can be used to copy data between two company codes or SAP systems.

Report Name Description

RFBIDE10 Transfer Customer Master Data from Source Company Code: Send

RFBIKR10 Transfer Vendor Master Data from Source Company Code: Send

RFBISA10 Copy General Ledger Account Master Data: Send

Table 6.1  Reports for Sending Master Data to an External System in Batch-Input Format

These reports are listed only for your information; they do not include any enhance-
ments or user exits. However, the logic of the reports is clear and simple, so it’s not
a big problem for an average ABAP developer to make a copy of any of the reports
and tailor that copy to specific corporate needs.

6.1.2	 ALE/IDoc tools

Another set of reports generates master data IDocs for higher-level communication
with external systems. For all three main kinds of FI master data—general ledger
accounts, customers, vendors—the ALE/IDoc interface is built using a very similar
approach. One report is for creating and sending an IDoc of a particular type,
and one report is for requesting an IDoc from an external system. The requesting
report actually sends a special type of IDoc of basic type ALEREQ01, which contains
a high-level application object identification and a set of criteria similar to an ABAP
range construct.

Next, we’ll see what tools can be used to distribute accounting master data (general
ledger accounts, customers, and vendors) and what user exits are available there.

General Ledger Account Master Record

Sending Transaction BD18 is linked to report RBDSEGLM with this simple logic: The
report selects well-known general ledger account tables—SKA1, SKB1, SKAT—and
generates an IDoc. The report can only send one of two predefined logical messages:
GLCORE and GLMAST. By default, the GLCORE message is mapped to the GLCORE01 IDoc
type, and the GLMAST message is mapped to the GLMAST01 IDoc.

These IDoc types differ in data volume to be sent. GLCORE01 includes only very basic
general ledger account data, whereas GLMAST contains much more data.

199

Master Data Distribution 6.1

The GLCORE IDoc is generated by the MASTERIDOC_CREATE_GLCORE function module,
and the GLMAST IDoc is generated by the MASTERIDOC_CREATE_GLMAST function.

Only function MASTERIDOC_CREATE_GLCORE has predefined enhancement capabili-
ties: You can use the source code enhancement point of the spot ES_SAPLKS03.
The enhancement point is situated exactly before sending the generated IDoc to
the ALE runtime system via the MASTER_IDOC_DISTRIBUTE function module. The
MASTERIDOC_CREATE_GLMAST function module has several source code enhancement
points of the spot ES_SAPLKS03_1; however, it’s marked as SAP internal, so you
can’t legally implement it.

Sending Customers

Customer master records can be sent to an external system by Transaction BD12,
which is linked to report RBDSEDEB. Figure 6.1 shows the selection screen of the
report.

Figure 6.1  Selection Screen of Report RBDSEDEB

By default, the report generates and sends one of two IDoc messages: DEBMAS and
DEBCOR. However, unlike the general ledger account master sending program, report
RBDSEDEB can be enhanced using a source code plug-in technique via enhancement
spot ES_RBDSEDEB. The spot has three enhancement options:

EE Dynamic enhancement point RBDSEDEB_01 at the event AT SELECTION-SCREEN
ON VALUE-REQUEST FOR MESTYP allows you to add your own message types to
the selection list.

© 2013 by Galileo Press Inc., Boston (MA)200

Outbound Scenarios in Financial Accounting6

EE Dynamic enhancement section RBDSEDEB_02 at the report event AT SELECTION-
SCREEN ON MESTYP allows you to check the entered message type.

EE Dynamic enhancement section RBDSEDEB_03 contains a call to the ALE runtime
system for sending the generated IDoc. Using the enhancement section, you can
completely redefine the logic of sending the IDoc to an external system.

Note

If you plan to use the enhancement spot ES_RBDSEDEB, you should become familiar with
the whole source code of report RBDSEDEB and thoroughly evaluate the possible impact
of your coding on other applications.

Message DEBCOR is used to send only a customer’s most basic data: number, name,
and address. Standard SAP function module MASTERIDOC_CREATE_DEBCOR, which
generates message DEBCOR, has only one enhancement point, MASTERIDOC_CRE-
ATE_DEBCOR_G2, of the spot ES_SAPLVV01, which is located before the actual sending
of the created IDoc to the ALE runtime system.

The program logic of sending customer master records into an external system
with message DEBMAS has another level of enhancement options, which is located
in function module MASTERIDOC_CREATE_DEBMAS. This function module employs
source code plug-ins, BAdI definitions, and customer enhancements.

Let’s walk through the available user exits: BAdI method calls, function module
exits, and enhancement spots.

BAdI Definition CUSTOMER_ADD_DATA_BI

To use this BAdI inside the MASTERIDOC_CREATE_DEBMAS function module, you have
to implement its interface method, FILL_ALE_SEGMENTS_OWN_DATA. The method is
called after each IDoc segment has filled with data.

Function Module Exit VSV00001

Function modules EXIT_SAPLVV01_001 in the form of CALL CUSTOMER-FUNCTION is
called just like a BAdI interface method after forming each segment data.

Enhancement Spot ES_SAPLVV01

The spot includes several source code plug-ins inside the MASTERIDOC_CREATE_DEBMAS
function module and VV01 function group:

201

Master Data Distribution 6.1

EE Using static enhancement points LVV01TOP_01 and LVV01TOP_02, you can declare
your own global data for the function group VV01.

EE Dynamic enhancement points MASTERIDOC_CREATE_DEBMAS_06 and MASTERI-
DOC_CREATE_DEBMAS_G2 allow you to implement last-minute additions to the
generated IDoc just before it’s sent to the ALE runtime.

EE By means of dynamic enhancement point MASTERIDOC_CREATE_DEBMAS_04, you can
add some logic before processing customer data; for example, you can redefine
IDoc control parameters.

EE Other available dynamic enhancement points include MASTERIDOC_CREATE_DEB-
MAS_01, MASTERIDOC_CREATE_DEBMAS_02, MASTERIDOC_CREATE_DEBMAS_03, and
MASTERIDOC_CREATE_DEBMAS_05, which can be used to implement additional
logic for adding your application-specific segments to the IDoc. For example,
in the IDES system, Industry Solution IS-Oil is installed, and its specific logic is
implemented here using enhancement spot ES_SAPLVV01.

Sending Vendors

The process of sending vendor master data looks very similar to that of sending
customer master data. Transaction BD14 is linked to report RBDSECRE, which has
almost the same look and feel as report RBDSEDEB. The selection screens of both
reports look almost identical, as you can see by looking at Figure 6.2.

Figure 6.2  Selection Screen of the Report RBDSECRE

© 2013 by Galileo Press Inc., Boston (MA)202

Outbound Scenarios in Financial Accounting6

However, in the source code of report RBDSECRE, you can see obvious differ-
ences from that of RBDSEDEB: The vendor sending report completely lacks any
enhancements. For example, you can’t expand the list of available messages without
modification. The report by default can generate two main logical messages, CRECOR
and CREMAS, as well as their reduced versions.

The report RBDSECRE calls function module MASTERIDOC_CREATE_CRECOR for generat-
ing message CRECOR, and MASTERIDOC_CREATE_CREMAS for the message CREMAS.

Message CRECOR is linked by default to the IDoc basic type CRECOR01 and includes only
basic vendor data, such as vendor number, name, and address. Only the MASTERIDOC_
CREATE_CRECOR_G2 enhancement point is available in the MASTERIDOC_CREATE_CRECOR
function module: It is located before the call of MASTER_IDOC_DISTRIBUTE. At the
moment of the call, all of the IDoc data are already prepared. As you might expect,
the MASTERIDOC_CREATE_CREMAS function module has more enhancement options
available.

BAdI Definition VENDOR_ADD_DATA_BI

As with the customer sending report, you have to implement the interface method
FILL_ALE_SEGMENTS_OWN_DATA to use the BAdI inside the MASTERIDOC_CREATE_CREMAS
function module. This method is called after each IDoc segment has filled with
data.

Function Module Exit VSV00001

Function module EXIT_SAPLKD01_001 is called just like the BAdI interface method
after forming each data segment.

Enhancement Spot ES_SAPLKD01

The enhancement spot contains the following points:

EE Static enhancement point LKD01TOP_01 can be used to declare global variables.

EE Dynamic enhancement point MASTERIDOC_CREATE_CREMAS_G2 can be used to
implement additional logic to be executed just before sending the prepared
IDoc via the ALE runtime.

203

Dunning 6.2

EE Dynamic enhancement points MASTERIDOC_CREATE_CREMAS_01, EHP_MASTERIDOC-
CREATE_CREMAS_01, and EHP_MASTERIDOCCREATE_CREMAS_02 can be used to add
your own segment to the IDoc.

6.2	 Dunning

Dunning is the process of notifying business partners of overdue payments. The
simplest way to use a dunning procedure is to print out previously configured
dunning letters and send them to owing customers or vendors.

The process of dunning in SAP uses sophisticated configuration tools to make the
procedure completely automatic (well, almost). However, as always, not every
instance or unique specification can be foreseen. To make room for custom-defined
additions to the standard dunning procedure, SAP offers a number of user exits
that we’ll discuss in the following subsections.

6.2.1	 BTEs in Transaction F150

Transaction F150 (Dunning) is an entry point to the main dunning procedure
activities: configuring the dunning activity, printing individual dunning notices, or
scheduling an automatic dunning run. The transaction code contains some enhance-
ment capabilities in the form of BTE calls. Using these BTEs, you can enhance the
user interface of the transaction. The GUI status of the transaction has a function
code OPFI, which by default is hidden. BTE 00001750 defines the text of the func-
tion code, and BTE 00001751 implements your specific processing of function code
OPFI. Note that the additional command is available only on the Parameter tab
of Transaction F150.

Secret Function Codes

Transaction F150 contains secret function codes that allow enabling and disabling of
Open FI events processing. The “secret” means that these function codes aren’t available
in the transaction toolbar or menu; you can only execute them by directly entering the
code into the GUI window command field. Code OFI shows the status of Open FI events
for dunning; OFI+ enables Open FI processing; and OFI- disables Open FI.

© 2013 by Galileo Press Inc., Boston (MA)204

Outbound Scenarios in Financial Accounting6

For the sake of demonstration, we implemented both events in the IDES system.
The configuration of BTEs is shown in Figure 6.3.

Figure 6.3  BTE Configuration for Transaction F150

Listing 6.1 shows a sample implementation of event 00001750. We assign a predefined
text to the export parameter E_FTEXT. Note, however, a real-life implementation
should take into account the language key, which is supplied as import parameter
I_SPRAS.

FUNCTION Z_SAMPLE_INTERFACE_00001750.
*”--
””Local Interface:
*” IMPORTING
*” VALUE(I_SPRAS) LIKE SY-LANGU

205

Dunning 6.2

*” EXPORTING
*” VALUE(E_FTEXT) LIKE FTEXTS-FTEXT
*”--

 E_FTEXT = ‘Dunning enhancement’(001).
ENDFUNCTION.

Listing 6.1  Sample Implementation of BTE 00001750

Listing 6.2 shows the test implementation of event 00001751. The combination
of I_LAUFD and I_LAUFI import parameters is the unique key of the dunning run.
The one-character import parameter I_AKTYP shows the mode of the running
transaction. It can take as a value either V for editing mode or A for display mode,
depending on the status of the dunning run. If I_AKTYP = A, you can show your
additional parameters for the dunning run without modification.

FUNCTION z_sample_interface_00001751.
*”--
””Local Interface:
*” IMPORTING
*” VALUE(I_AKTYP) LIKE OFIWA-AKTYP OPTIONAL
*” VALUE(I_LAUFD) LIKE MAHNV-LAUFD
*” VALUE(I_LAUFI) LIKE MAHNV-LAUFI
*”--
 MESSAGE ‘Sample 00001751 implementation called’(002) TYPE ‘I’.
ENDFUNCTION.

Listing 6.2  Sample Implementation of BTE 00001751

There can be more than one implementation of both 00001750 and 00001751
events. For example, in the IDES system, there is an SAP TR-LO (loan management)
component installed, which implements an addition to the dunning functionality.
Therefore, the system supplies a generic text for the OPFI function code (see the
menu selected in Figure 6.4).

© 2013 by Galileo Press Inc., Boston (MA)206

Outbound Scenarios in Financial Accounting6

Figure 6.4  Additional Menu Command in Dunning Parameter Configuration Screen

When selecting the menu command, the system displays a dialog box that instructs
you to choose a particular component (see Figure 6.5).

You can use these BTEs to supply additional parameters for a dunning run. Remember
that a dunning run is identified by the date (Run on) and an additional arbitrary
identification code (Identification). These fields are mandatory, so both fields
must be filled in by the time you execute the BTE implementation. The storage for
your additional parameters is completely your responsibility.

You can use previously saved additional data during the dunning run itself by using
another set of user exits, which we’ll discuss in the next section.

207

Dunning 6.2

Figure 6.5  Additional Components of the Dunning Parameters Configuration

6.2.2	 BTEs during the Dunning Run

A dunning run consists of two phases: dunning data selection and printout. Dunning
data selection is performed by SAP report SAPF150S2; while the printout phase is
executed by SAPF150D2. The user can select to perform each phase independently
or both in one run.

Data Selection Phase

The data selection phase processes vendor and/or customer open items and stores
dunning data in several tables. As a result, the report SAPF150S2 generates a
number of records in Tables MHNK and MHND by means of function module
GENERATE_DUNNING_DATA.

© 2013 by Galileo Press Inc., Boston (MA)208

Outbound Scenarios in Financial Accounting6

During the run of report SAPF150S2, you can use several BTEs.

Event 00001703

This event should actually be called a process because it allows you to change data.
Listing 6.3 shows the interface of the event. Despite the fact that table parameters
are declared as untyped, they all actually have a structure of a RANGE (or SELECT-
OPTION).

FUNCTION SAMPLE_INTERFACE_00001703.
*“--
““Lokale Schnittstelle:
*“ TABLES
*“ T_SEL_CC
*“ T_SEL_CUST
*“ T_SEL_VEN
*“ T_LOG_CUST
*“ T_LOG_VEND
*“ T_SEL_FILTER
*“--
ENDFUNCTION.

Listing 6.3  The Interface of BTE 00001703

The elements in the listing are defined as follows:

EE T_SEL_CC

A range for the company code.

EE T_SEL_CUST

A range of customer numbers to be processed.

EE T_SEL_VEN

A range of vendor numbers to be processed.

EE T_LOG_CUST

A range of customer numbers to be processed with trace.

EE T_LOG_VEND

A range of vendor numbers to be processed with trace.

EE T_SEL_FILTER

A free selection list of field values. The list corresponds to the IFLDTAB dictionary
structure. Each record contains a full field name (FLDNA). An example field name

209

Dunning 6.2

can be KNA1-STCD1. Fields FLDL1 and FLDL2 contain a comma-delimited list of
possible values. There is also the flag IGNOR, which works as an exclusion mark
for matching table entries, and the flag UPPCT for case-insensitive values.

Inside the event implementation, you can amend the parameters and thus change
the selection criteria for customer or vendor open items to be dunned.

Process 00001053—DUNNING: Set a One-Time Account

This process is called inside the GENERATE_DUNNING_DATA function module when the
function processes a one-time account item. The process allows you to generate
your own one-time account group key.

Process 00001060—DUNNING: Dunning Check MHND

This process allows the system to decide if a particular item should or should not be
dunned. As seen in Listing 6.4, the process has one import parameter of structure
MHND (dunning data) and three flags to return, which controls further processing of
the item. Additionally, the process can return messages to be shown in the resulting
log via table parameter T_FIMSG.

FUNCTION SAMPLE_PROCESS_00001060.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_MHND) LIKE MHND STRUCTURE MHND
*” TABLES
*” T_FIMSG STRUCTURE FIMSG
*” CHANGING
*” VALUE(C_XFAEL) LIKE MHND-XFAEL
*” VALUE(C_XZALB) LIKE MHND-XZALB
*” VALUE(C_MANSP) LIKE MHND-MANSP
*”--
ENDFUNCTION.

Listing 6.4  The Interface of Process 00001060

Event 00001762—Dunning

This event should be a process because it has changing parameters. This event can
be used to fill additional fields in a dunning item (MHND_EXT). Listing 6.5 shows the
interface of the event.

© 2013 by Galileo Press Inc., Boston (MA)210

Outbound Scenarios in Financial Accounting6

FUNCTION SAMPLE_INTERFACE_00001762.
*”--
””Lokale Schnittstelle:
*” CHANGING
*” REFERENCE(CS_MHND_EXT) LIKE MHND_EXT STRUCTURE MHND_EXT
*”--

ENDFUNCTION.

Listing 6.5  The Interface of BTE 00001762

Note

Besides its activation in the general BTE configuration, event 00001762 should also be
activated in the runtime by calling function module SET_EXIT_ACTIVE of function group
F150.

Process 00001061—DUNNING: Delete Indicator MHND

Using this process, you can completely remove a dunning item from the processing
list. The process has the import parameter of the structure MHND and a changing
flag C_DEL_DU.

Note

When implementing the logic of process 00001061, you should take into account the
imported value of the parameter C_DEL_DU. If it’s already marked with an X, you might
not need any further processing.

Event 00001763—Dunning

This event is called before Phase III of data selection. At this stage, all of the dun-
ning run data have already been prepared, and the system is ready to calculate the
minimal dunning amount and interest charges.

Note

Besides its activation in general BTE configuration, event 00001763 should also be activated
in runtime by calling function module SET_EXIT_ACTIVE of function group F150.

211

Dunning 6.2

This event has the full pack of prepared dunning data as table parameters:

EE CT_MHNK

Dunning account entry.

EE CT_MHND_EXT

Dunning data items.

Process 00001068—DUNNING: Activate Group Interest Calculation

This process can be used to enable group interest calculation. Import parameters
of the process are the following:

EE Dunning procedure code (field MHNK-MAHNA)

EE Application code (field MHNK-APPLK)

Note that field MHNK-APPLK should be the field at the moment of other BTEs or
process calls. The process returns the group interest calculation flag in export
parameter E_GROUP_INTEREST.

Process 00001074—DUNNING: Carry Out Group Interest calculation

If process 00001068 previously activated group interest, then process 00001074 is
supposed to perform this particular calculation.

In the IDES system, there is only one SAP function module, FI_PSO_PROCESS_00001074
that is subscribed to this process. The function belongs to the SAP Public Sector
Industry Solution.

Process 00001076—DUNNING: Interest Calculation for PA

Process 00001076 is called if the group interest calculation is disabled and when
the system has calculated interest in its standard way. Another prerequisite for
this process call is switch FM_CI_CORE_SFWS_2: The process is called if the switch
is turned on.

As part of the SAP Public Sector Industry Solution in the IDES system, SAP function
module FI_PSO_PROCESS_00001076 is subscribed to this process.

Process 00001050—DUNNING: Read Additional Fields for MHNK

The process can be used for filling additional fields in dunning account entries (Table
MHNK). You can extend this table using customer include structure CI_MHNK.

The process also has a flag parameter MIN_IT, which shows that a dunning account
entry being processed contains the lowest possible dunning level.

© 2013 by Galileo Press Inc., Boston (MA)212

Outbound Scenarios in Financial Accounting6

Event 00001764—Dunning: Alternative Check for Account Balance

This is the final event available in a selection process. You can use it to make the
final decision whether the dunning item being processed should be dunned at all.
The interface of the event is shown in Listing 6.6.

FUNCTION SAMPLE_INTERFACE_00001764.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” REFERENCE(I_WAERS) LIKE MHNK-WAERS
*” EXPORTING
*” REFERENCE(EB_PROCESSED) LIKE BOOLE-BOOLE
*” TABLES
*” T_MHND_EXT STRUCTURE MHND_EXT
*” T_T047B STRUCTURE T047B
*” T_FIMSG STRUCTURE FIMSG
*” CHANGING
*” VALUE(CB_DUNN_IT) LIKE BOOLE-BOOLE
*” REFERENCE(CS_MHNK) LIKE MHNK STRUCTURE MHNK
*”--
ENDFUNCTION.

Listing 6.6  The Interface of BTE 00001764

As a result of its run, the event implementation should set the flag CB_DUNN_IT if
the items presented by table parameter T_MHND_EXT must be dunned; and also flag
EB_PROCESSED to tell the system that the event has taken over the processing. If
the event returned space in the parameter EB_PROCESSED, then the system runs the
standard amount check algorithm.

Dunning Printout Phase

When dunning data has been gathered, checked, and calculated by report SAPF150S2,
it’s time to run the next phase of the dunning process: printout. The phase is
performed by standard report SAPF150D2, which outputs dunning letters to a
customer or a vendor on the list. SAP offers some functionality to implement output
on different types of media such as hardcopy, fax, or email. However, you can use
numerous BTEs available in report SAPF150D2 to thoroughly tailor the process to
your specific business needs.

In the following subsections, we discuss these events in the order of their appear-
ance during processing.

213

Dunning 6.2

Event 00001705—DUNNING: Start of Dunning Notice Printout

Event 00001705 is called before selecting and sorting dunning data. You can use
this event to amend selection criteria, which were passed on to the report from
Transaction F150. The event interface is shown in Listing 6.7.

FUNCTION SAMPLE_INTERFACE_00001705.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_LAUFD) LIKE F150V-LAUFD
*” VALUE(I_LAUFI) LIKE F150V-LAUFI
*” VALUE(I_UPDATE) LIKE BOOLE-BOOLE
*” TABLES
*” T_SEL_DEBI
*” T_SEL_KRED
*” CHANGING
*” VALUE(E_ITCPO) LIKE ITCPO STRUCTURE ITCPO
*” VALUE(E_DIRECTION) TYPE C
*”--
ENDFUNCTION.

Listing 6.7  The Interface of Event 00001705

T_SEL_DEBI and T_SEL_KRED are passed on as untyped table parameters; however,
they both have the structure of SELECT-OPTIONS of RANGE.

The I_UPDATE import flag shows that the report was submitted in an update mode;
that is, it updates dunning data after printing. Besides possible changes in selection
criteria, events T_SEL_DEBI and T_SEL_KRED can return printing parameters in export
structure E_ITCPO and also the sorting direction in E_DIRECTION. The direction can
either be A for ascending or D for descending.

Process 00001020—DUNNING: Following Reading, Prior to Printing

This process allows the user to change dunning data before printing. The interface
includes changeable dunning header structure E_MHNK and dunning items in table
structure T_MHND. See a sample interface in Listing 6.8.

FUNCTION SAMPLE_PROCESS_00001020.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_MAHNV) LIKE MAHNV STRUCTURE MAHNV

© 2013 by Galileo Press Inc., Boston (MA)214

Outbound Scenarios in Financial Accounting6

*” VALUE(I_F150V) LIKE F150V STRUCTURE F150V
*” TABLES
*” T_MHND STRUCTURE MHND
*” CHANGING
*” VALUE(E_MHNK) LIKE MHNK STRUCTURE MHNK
*”--
ENDFUNCTION.

Listing 6.8  BTE Process 00001020 Interface

Event 00001719—DUNNING: Additional Activities Before Printing and Event
00001720—DUNNING: Printing Dunning Notice

These events are called one after the other and have identical interfaces, as shown
in Listing 6.9.

FUNCTION SAMPLE_INTERFACE_00001719.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_MAHNV) LIKE MAHNV STRUCTURE MAHNV
*” VALUE(I_F150V) LIKE F150V STRUCTURE F150V
*” VALUE(I_MHNK) LIKE MHNK STRUCTURE MHNK
*” VALUE(I_ITCPO) LIKE ITCPO STRUCTURE ITCPO
*” VALUE(I_UPDATE) LIKE BOOLE-BOOLE
*” VALUE(I_MOUT) LIKE BOOLE-BOOLE
*” VALUE(I_OFI) LIKE BOOLE-BOOLE
*” TABLES
*” T_MHND STRUCTURE MHND
*” T_FIMSG STRUCTURE FIMSG
*” CHANGING
*” VALUE(E_COMREQ) LIKE BOOLE-BOOLE
*” VALUE(E_RETCODE) TYPE C
*”--
ENDFUNCTION.

Listing 6.9  The Interface of BTEs 00001719 and 00001720

Event implementations should not change dunning data. If any of the events return
X in export parameter E_COMREQ, then the system should issue a database COMMIT after
event execution. If there is no active implementation of event 00001720, the system
calls standard function module FI_PRINT_DUNNING_NOTICE, which implements the
default printing functionality via SAPscript. If you need to print a dunning letter
as a SAP Smart Form, then implement event 00001720 and use function module

215

Dunning 6.2

FI_PRINT_DUNNING_NOTICE_SMARTF. For SAP Interactive Forms by Adobe, you can
use function module FI_PRINT_DUNNING_NOTICE_PDF.

You can also use event 00001720 to implement dunning output on other media
such as EDI, email, or even SMS (text messages).

Process 00001030—DUNNING: Determine Form

This process allows you to implement logic for choosing the printout form and is
called from within module GET_DUNNING_CUSTOMIZING. The GET_DUNNING_CUSTOMIZING
function is indirectly called from FI_PRINT_DUNNING_NOTICE, FI_PRINT_DUNNING_
NOTICE_PDF, and FI_PRINT_DUNNING_NOTICE_SMARTF function modules. However, if
you don’t use the printing functions mentioned previously for a particular dunning
data, process 00001030 is irrelevant. Its interface is shown in Listing 6.10.

FUNCTION SAMPLE_PROCESS_00001030.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_MHNK) LIKE MHNK STRUCTURE MHNK
*” CHANGING
*” VALUE(C_FORNR) LIKE T047E-FORNR
*” VALUE(C_LISTN) LIKE T047E-LISTN
*” VALUE(C_XAVIS) LIKE T047E-XAVIS
*” VALUE(C_ZLSCH) LIKE T047E-ZLSCH
*”--
ENDFUNCTION.

Listing 6.10  BTE Process 00001030 Interface

Process 00001040—DUNNING: Determine Output Device

Process 00001040 is called indirectly from within function modules FI_PRINT_DUN-
NING_NOTICE, FI_PRINT_DUNNING_NOTICE_PDF, and FI_PRINT_DUNNING_NOTICE_SMARTF.
The process function interface is shown in Listing 6.11.

FUNCTION SAMPLE_PROCESS_00001040.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_KNA1) LIKE KNA1 STRUCTURE KNA1
*” VALUE(I_KNB1) LIKE KNB1 STRUCTURE KNB1
*” VALUE(I_LFA1) LIKE LFA1 STRUCTURE LFA1
*” VALUE(I_LFB1) LIKE LFB1 STRUCTURE LFB1

© 2013 by Galileo Press Inc., Boston (MA)216

Outbound Scenarios in Financial Accounting6

*” VALUE(I_MHNK) LIKE MHNK STRUCTURE MHNK
*” VALUE(I_F150D2) LIKE F150D2 STRUCTURE F150D2
*” VALUE(I_T047E) LIKE T047E STRUCTURE T047E
*” VALUE(I_UPDATE) LIKE BOOLE-BOOLE
*” TABLES
*” T_FIMSG STRUCTURE FIMSG
*” CHANGING
*” VALUE(C_FINAA) LIKE FINAA STRUCTURE FINAA
*” VALUE(C_ITCPO) LIKE ITCPO STRUCTURE ITCPO
*” VALUE(C_ARCHIVE_INDEX) LIKE TOA_DARA
*” STRUCTURE TOA_DARA DEFAULT SPACE
*” VALUE(C_ARCHIVE_PARAMS) LIKE ARC_PARAMS
*” STRUCTURE ARC_PARAMS DEFAULT SPACE
*”--
ENDFUNCTION.

Listing 6.11  BTE Process 00001040 Interface

A subscribed function module is expected to return printing device properties in
structure C_FINAA and printing parameters in structure C_ITCPO. It can also return
archive parameters in structures C_ARCHIVE_INDEX and C_ARCHIVE_PARAMS. The
implementation should acknowledge the I_UPDATE flag: If the flag is blank, then the
event is called for test printing; otherwise, the printing is productive. The purpose
of other parameters should be clear by their definitions.

If you don’t use the printing functions mentioned previously, then process 00001040
is irrelevant.

6.2.3	 Dunning Summary

The dunning process has a wide choice of enhancement capabilities at many different
levels. By possessing such tools, you can implement sophisticated dunning output
automation, which allows you to incorporate virtually any technique and media.

6.3	 Payment Program

The payment program is another example of an outbound accounting interface. The
payment program processes vendor or customer open items, which must be paid
via a bank account. Each specific payment run is identified by two key fields: run
date (LAUFD) and character ID (LAUFI). This is similar to the dunning process.

217

Payment Program 6.3

The process of an automatic payment run is divided into two phases:

1.	Generating the payment proposal	
Technically, payment proposal data is stored in database tables REGUH and
REGUP, and payment run parameters are located in FB table REGUV.

2.	Payment posting and generating payment media	
Payment media can be just a set of printed payment notices for a bank, a set of
EDI messages, or a file in a specific bank format.

The main entry point for the payment run is Transaction F110. You can set param-
eters for the payment run and schedule payment proposal creation and payment
posting creation.

The method of payment media creation (printout form, EDI message, or file) is
defined in Payment Method, which is a set of configuration parameters stored in a
number of customizing tables T042*. There are two options for media creation:
via Print Workbench and DME (data medium exchange) engine, or by a classical
printing program (the names of these programs traditionally start with RFF).

Technically, the control logic of Transaction F110 is mainly implemented in module
pool SAPF110V, while payment proposal and payment creation is performed in
report SAPF110S.

We’ll now discuss available enhancement options in the payment control utility
(Transaction F110) and in payment program SAPF110S.

6.3.1	 User Exits in Transaction F110

Unlike the dunning control utility (Transaction F150), the user interface of Trans-
action F110 cannot be enhanced. Nevertheless, a number of enhancements are
available, which we’ll highlight in the following subsections.

BAdI Definition FI_F110_SCHEDULE_JOB

The only interface method of the BAdI is called when the user saves payment run
schedule parameters. Parameters are passed to the method in structure F110V.
Depending on the check logic, the method returns an X (if everything is okay) or
a space (if not okay) in the export parameter E_PARAM_OK.

© 2013 by Galileo Press Inc., Boston (MA)218

Outbound Scenarios in Financial Accounting6

Payment Release List BTEs

Transaction F110 also has two BTEs that work only if the SAP application Payment
Release List is activated. This application can be activated and configured using
Transaction FPRL_CUSTOMIZING, which opens a subset of IMG settings. In the
IDES system, however, these events do not have entries in BTE configuration tables,
so they might be reserved for future use.

Event 00002105

This event is called just before opening a pop-up screen with payment run schedule
parameters. The interface of the event is shown in Listing 6.12.

FUNCTION SAMPLE_INTERFACE_00002105.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” REFERENCE(I_LAUFD) TYPE LAUFD
*” REFERENCE(I_LAUFI) TYPE LAUFI
*” REFERENCE(I_XVORL) TYPE XVORL
*”--
ENDFUNCTION.

Listing 6.12  BTE 00002105 Interface

Parameters I_LAUFD and I_LAUFI identify the payment run being processed. Flag
I_XVORL shows the mode of the run: If it’s X, then the run is for payment proposal
creation; otherwise, the run is for payment posting and printing.

Process 00001819

This process is called after the run is executed, including printing payment media.
Note that process 00001819 doesn’t have any changing or export parameters. The
interface of the process is shown in Listing 6.13.

FUNCTION OPEN_FI_PERFORM_00001819_P.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” REFERENCE(I_XVORL) TYPE XVORL
*” REFERENCE(I_LAUFD) TYPE LAUFD
*” REFERENCE(I_LAUFI) TYPE LAUFI
*” REFERENCE(IS_JOBNAME) OPTIONAL
*” REFERENCE(I_JOBCOUNT) TYPE C OPTIONAL

219

Payment Program 6.3

*”--
ENDFUNCTION.

Listing 6.13  BTE Process 00001819 Interface

In addition to the payment run identification and run mode, this process also
includes the background job name and count.

6.3.2	 User Exits in Payment Program SAPF110S

The payment run in the payment program is identified according to schedule
parameters by run date and identifier, which were set in Transaction F110. During
its run, the payment program processes vendor and customer open items to be
paid, posts payment documents to accounting to represent bank transactions, and
updates the payment run information into database tables REGUH and REGUP.

Process 00001820—PAYMENT PROGRAM: Item Selection

This process is called when the system is processing customer or vendor open
items. The interface of the process is shown in Listing 6.14.

FUNCTION SAMPLE_PROCESS_00001820.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” REFERENCE(I_BSID) TYPE BSID OPTIONAL
*” REFERENCE(I_BSIK) TYPE BSIK OPTIONAL
*” REFERENCE(I_KOART) LIKE BSEG-KOART
*” REFERENCE(I_BUDAT) LIKE F110C-BUDAT OPTIONAL
*” REFERENCE(I_NEDAT) LIKE F110V-NEDAT OPTIONAL
*” REFERENCE(I_FDEBI) LIKE F110V-FDEBI OPTIONAL
*” REFERENCE(I_TRACE) LIKE TRCOPT STRUCTURE TRCOPT OPTIONAL
*” EXPORTING
*” REFERENCE(E_NO_FREE_SELECTIONS) TYPE C
*” TABLES
*” T_FLDTAB_1820 STRUCTURE F110_FLDTAB_1820 OPTIONAL
*” CHANGING
*” REFERENCE(C_ZLSPR) LIKE BSEG-ZLSPR
*” REFERENCE(C_ZLSCH) LIKE BSEG-ZLSCH
*”--
ENDFUNCTION.

Listing 6.14  The Interface of BTE Process 00001820

© 2013 by Galileo Press Inc., Boston (MA)220

Outbound Scenarios in Financial Accounting6

Depending on the I_KOART parameter that represents the type of account being
processed, either the I_BSIK (for I_KOART = ‘K’) or I_BSID (for I_KOART = ‘D’)
structure will be filled with values. I_BSIK is a single item of a vendor; I_BSID is
a line item of a customer. As a result of the process logic, changing parameters
C_ZLSPR and C_ZLSCH can be returned. C_ZLSPR is a payment blocking indicator,
whereas C_ZLSCH is the new value for the payment method.

Process 00001830—PAYMENT PROGRAM: Edit Group

When processing payment data, some line items are gathered into groups by the
payment program, which will then be posted as a single accounting document.
Process 00001830 can be used to cancel processing of the whole group of items or
of individual items in the group (see Listing 6.15).

FUNCTION SAMPLE_PROCESS_00001830.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” REFERENCE(I_BUDAT) LIKE F110C-BUDAT OPTIONAL
*” REFERENCE(I_NEDAT) LIKE F110V-NEDAT OPTIONAL
*” REFERENCE(I_FDEBI) LIKE F110V-FDEBI OPTIONAL
*” REFERENCE(I_TRACE) LIKE TRCOPT STRUCTURE TRCOPT OPTIONAL
*” TABLES
*” T_REGUP STRUCTURE REGUP_1830
*” CHANGING
*” REFERENCE(C_REGUH) TYPE REGUH_1830
*”--
ENDFUNCTION.

Listing 6.15  00001830 BTE Process Interface

The group header is represented as changing parameter C_REGUH of type REGUH_1820.
Group items are passed to the process as a table parameter T_REGUP of structure
REGUP_1830. If the process fills C_REGUH-XIGNO with X, then the whole group is
ignored. The same rule is relevant to group items: All items with XIGNO = ‘X’ will
be ignored.

Process 00001810—PAYMENT PROGRAM: Individual Bank Determination

This process allows the interception of the standard bank determination logic.
Depending on the import parameter values, the process can amend the house bank
list (T_HBANK) and the partner bank list (T_PBANK). If payment is relevant for bank

221

Payment Program 6.3

chains, then this process can return up to three corresponding bank data in export
parameters: E_KORRESPBANK, E_KORRESPBANK2, and E_KORRESPBANK3. The sample
interface of process 00001810 is shown in Listing 6.16.

FUNCTION SAMPLE_PROCESS_00001810.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” VALUE(I_RZAWE) LIKE REGUH-RZAWE
*” VALUE(I_WAERS) LIKE REGUH-WAERS
*” VALUE(I_RWBTR) LIKE REGUH-RWBTR
*” VALUE(I_RBETR) LIKE REGUH-RBETR
*” VALUE(I_KUNNR) LIKE REGUH-KUNNR
*” VALUE(I_LIFNR) LIKE REGUH-LIFNR
*” VALUE(I_ZBUKR) LIKE REGUH-ZBUKR
*” VALUE(I_SRTGB) LIKE REGUH-SRTGB
*” VALUE(I_SRTBP) LIKE REGUH-SRTBP
*” VALUE(I_HBKID) LIKE ZHLG1-HBKID OPTIONAL
*” EXPORTING
*” VALUE(E_KORRESPBANK) LIKE F110_KBANK
*” STRUCTURE F110_KBANK
*” VALUE(E_KORRESPBANK2) LIKE F110_KBANK
*” STRUCTURE F110_KBANK
*” VALUE(E_KORRESPBANK3) LIKE F110_KBANK
*” STRUCTURE F110_KBANK
*” TABLES
*” T_HBANK STRUCTURE IHBANK
*” T_PBANK STRUCTURE F110_PBANK
*”--
ENDFUNCTION.

Listing 6.16  The Interface of BTE Process 00001810

Payment Release List BTE Processes

Some BTE processes are only activated if the Payment Release List application is
active. We discuss these in the following subsections.

Process 00001821

This process allows you to split a single payment item (represented by an entry in
table REGUP) into several items. Its interface is shown in Listing 6.17.

© 2013 by Galileo Press Inc., Boston (MA)222

Outbound Scenarios in Financial Accounting6

FUNCTION SAMPLE_PROCESS_00001821.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” REFERENCE(I_XVORL) TYPE XVORL
*” REFERENCE(I_LAUFD) TYPE LAUFD
*” REFERENCE(I_LAUFI) TYPE LAUFI
*” REFERENCE(IS_HEADER) TYPE HEADER_1821_PRL
*” REFERENCE(IS_REGUP) TYPE REGUP
*” CHANGING
*” REFERENCE(CT_ITEMS) TYPE REGUP_T_1821_PRL
ENDFUNCTION.

Listing 6.17  00001821 BTE Process Interface

The source REGUP structure is passed by import parameter IS_REGUP. The result of
splitting logic is expected to be returned in changing table parameter CT_ITEMS.

Process 00001831

This process can be used to verify the payment method for a group of payments. It
is represented by a header (REGUH) and several items (REGUP). As shown in Listing
6.18, payment group header information is passed by parameter IS_REGUH, and the
group items are passed by the IT_REGUP table parameter. Export parameter E_RZAWE
should contain the newly determined payment method.

FUNCTION SAMPLE_PROCESS_00001831.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” REFERENCE(I_XVORL) TYPE XVORL
*” REFERENCE(I_LAUFD) TYPE LAUFD
*” REFERENCE(I_LAUFI) TYPE LAUFI
*” REFERENCE(IS_ZHLG1) TYPE ZHLG1
*” REFERENCE(IS_REGUH) TYPE REGUH
*” REFERENCE(IT_REGUP) TYPE FI_T_REGUP
*” EXPORTING
*” REFERENCE(E_RZAWE) TYPE RZAWE
*”--
ENDFUNCTION.

Listing 6.18  00001831 BTE Process Interface

223

Payment Program 6.3

Process 00001809

This process can be used to implement bank determination logic specific to the
Payment Release List functionality. It is called just before the general BTE process
00001810. Listing 6.19 shows that unlike process 00001810, this process doesn’t
have corresponding bank export parameters.

FUNCTION SAMPLE_PROCESS_00001809.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” REFERENCE(I_XVORL) TYPE XVORL
*” REFERENCE(I_LAUFD) TYPE LAUFD
*” REFERENCE(I_LAUFI) TYPE LAUFI
*” REFERENCE(IS_REGUH) TYPE REGUH
*” REFERENCE(IS_ZHLG1) TYPE ZHLG1
*” TABLES
*” T_HBANK STRUCTURE IHBANK
*” T_PBANK STRUCTURE F110_PBANK
*”--
ENDFUNCTION.

Listing 6.19  00001809 BTE Process Interface

Process 00001815

Using this process, you can change payment group header information before post-
ing a corresponding accounting document. As shown in Listing 6.20, the process
should return changed header information in export parameter ES_REGUH_SF. The
logic should be based on the payment group data being processed.

FUNCTION SAMPLE_PROCESS_00001815.
*”--
””Lokale Schnittstelle:
*” IMPORTING
*” REFERENCE(I_XVORL) TYPE XVORL
*” REFERENCE(I_LAUFD) TYPE LAUFD
*” REFERENCE(I_LAUFI) TYPE LAUFI
*” REFERENCE(IS_ZHLG1) TYPE ZHLG1
*” REFERENCE(IS_REGUH) TYPE REGUH
*” REFERENCE(IT_REGUP) TYPE FI_T_REGUP
*” EXPORTING
*” REFERENCE(ES_REGUH_SF) TYPE REGUH_CSF_PRL
*”--
ENDFUNCTION.

Listing 6.20  00001815 BTE Process Interface

© 2013 by Galileo Press Inc., Boston (MA)224

Outbound Scenarios in Financial Accounting6

Process 00001811

Process 00001811 is only used when the SEPA supporting functionality is active in
the system. Using this process, you can implement specific logic for SEPA mandate
determination. It is called at the end of the bank determination logic in the pay-
ment program.

Note

SEPA is a pan-European method of electronic payment and is said to greatly reduce the
complexities of international payments inside the European Union.

You can see in Listing 6.21 that prepared SEPA mandates are passed to the process
by a changing table parameter: CT_MANDATES. Besides the mandates, the process
can return a table of processing messages that will be reported in the payment
program log.

FUNCTION SAMPLE_PROCESS_00001811.
*”--
””Local Interface:
*” IMPORTING
*” REFERENCE(I_LAUFD) TYPE LAUFD
*” REFERENCE(I_LAUFI) TYPE LAUFI
*” REFERENCE(I_XVORL) TYPE XVORL
*” REFERENCE(IS_REGUH) TYPE REGUH
*” REFERENCE(IS_REGUP) TYPE REGUP
*” REFERENCE(I_ZIBAN) TYPE DZIBAN
*” EXPORTING
*” REFERENCE(ET_MESSAGES) TYPE BAPIRET1_LIST
*” CHANGING
*” REFERENCE(CT_MANDATES) TYPE SEPA_TAB_DATA_MANDATE_DATA
*”--
ENDFUNCTION.

Listing 6.21  BTE 00001811 Process Interface

6.4	 Summary

The information we’ve discussed in this chapter has again proved the usefulness
of the system source code as complete and final system documentation (unless
something has been changed by an enhancement package or SAP note implemen-
tation). The outbound interface we considered in this chapter is just a subset of

225

Summary 6.4

the techniques that Financial Accounting can use. Other interfaces in SAP industry
solutions or more specific add-ons are also available. In any case, you should always
examine existing solutions from the enhancement point of view before starting the
development of a brand new interface. Also, when designing your own application,
you should always think of those who will maintain and support it after you finish
the development (even if it will be you).

In the final chapter, we’ll look at another tool that can help extend the system
functionality but that is often underestimated and reputed as too complex: SAP
Business Workflow.

© 2013 by Galileo Press Inc., Boston (MA)

227

In this chapter, we briefly discuss SAP Business Workflow, which is another
way to extend standard system functionality.

7	 Workflow as a User Exit

SAP Business Workflow is a tool for automating a business process when several
people have to fulfill different interactive operations during a process flow. The
most common scenario to implement with SAP Business Workflow is an approval
procedure of different kinds, such as payment approval, master data change, cre-
ation approval, and so on.

As an example, in Financial Accounting customizing, you can mark specific vendor
or customer master record fields as sensitive so that any change made by one user
to such a field requires confirmation from another user who has sufficient autho-
rization. It’s logical to make the system notify the authorized user of a vendor (or
customer) account change that must be confirmed or rejected. This is the task for
SAP Business Workflow.

You can also use SAP Business Workflow functionality for performing background
tasks, which is in a way closer to a common enhancement practice we were discuss-
ing in this book—when something works silently without user intervention. For
example, on one project, the customer requires that after creating a vendor master
record, which belongs to a particular account group, the corresponding customer
master record must be created with the same name, address, and some other fields.
This activity must also be performed without user interaction.

Note

For more information on SAP Business Workflow, we recommend Practical Workflow for
SAP, Second Edition, by Ginger Gatling et al. (SAP PRESS, 2009). You may also want
to visit an excellent SDN blog series by Jocelyn Dart concerning ABAP programming
in the SAP Business Workflow framework: at www.sdn.sap.com/irj/scn/weblogs?blog=/
pub/u/4075.

© 2013 by Galileo Press Inc., Boston (MA)228

Workflow as a User Exit7

In the following sections, we briefly review the main techniques of linking standard
system activities with custom-defined applications, as well as the main concepts
and objects of SAP Business Workflow.

7.1	 Workflow Events: Linking System Actions with External
Applications

Events in SAP Business Workflow can be compared to nerves in the human body:
They transfer signals from one application to another making the whole design
alive. Next, we’ll consider how events are handled; what tools you can use to cre-
ate them, and what you should be aware of when developing applications for SAP
Business Workflow.

7.1.1	 Event Handling

The SAP Business Workflow runtime system is informed of different business activi-
ties such as vendor account creation or an incoming invoice parking by means of a
workflow event. A workflow event is a kind of P&S interface resembling BTEs (or a
BAdI definition with multiple implementations). Unlike BTEs, you don’t subscribe
function modules to workflow events. Instead, you use special intermittent devel-
opment entities, workflow templates and standard tasks, which can be subscribed
to a particular workflow event.

Note

In earlier SAP releases, the workflow event was part of a business object (BO) definition.
BO is an old incarnation of the object oriented (OO) paradigm in SAP. A BO definition is
a development object maintained in Transaction SWO1. As of SAP NetWeaver AS 6.40,
a workflow event can be defined as a component of an ABAP global class.

A standard task is a single-step workflow, whereas the workflow template can con-
tain several standard tasks connected by different routes. The workflow template is
also called a multiple-step workflow. Each workflow event can have one or more
subscribers, which adds great flexibility to the design.

If you look at the runtime framework of BTEs, you can see that they are synchro-
nous, similar to a subroutine call. The main task passes complete control to the BTE
subscription function until the end of its execution. And, unless you use remote
BTEs (with RFC destination), the whole execution of the BTE is performed within

229

Workflow Events: Linking System Actions with External Applications 7.1

the runtime context of the original task. If there is more than one subscription
function, then they are executed sequentially. See the schematic control flow dur-
ing a BTE call in Figure 7.1.

CALL BTE EVENT

Main Task

BTE event subscriber 1

BTE event subscriber 2

BTE event subscriber 3

BTE event subscriber 4

Figure 7.1  Runtime Control Flow During BTE Call

On the contrary, a workflow event is linked to the host task asynchronously, so
after firing the event, the host task continues its execution. Each event subscriber
is executed independently in its own separate task as schematically shown in
Figure 7.2.

Invoke Workflow
Event

Main Task

Task 1

Task 2

Task 3

Figure 7.2  Runtime Control Flow During Workflow Event Processing

© 2013 by Galileo Press Inc., Boston (MA)230

Workflow as a User Exit7

For a BTE, the call of the event is just a synchronous function module call (or syn-
chronous RFC call). Workflow events handling is arranged in a more sophisticated
manner. For simplicity, you can assume that each workflow event handler is started
using a background RFC call in the form of CALL FUNCTION IN BACKGROUND TASK AS
SEPARATE UNIT. The RFC destination points to the same working system and has
a predefined special user account that is part of SAP Business Workflow Custom-
izing. If workflow functionality was ever used in your system, you can find special
RFC destinations in Transaction SM59 under the Logical Connections subtree
with the name of format WORKFLOW_LOCAL_NNN, where NNN is a client number (see
Figure 7.3).

Figure 7.3  Workflow-Specific RFC Destinations

231

Workflow Events: Linking System Actions with External Applications 7.1

7.1.2	 Event Creation Options

Workflow events can be created in the system with different techniques:

EE Some predefined workflow events are created in the system automatically by
SAP applications.

EE Workflow event creation can be linked to change documents.

EE Workflow events can be created programmatically using standard SAP function
module SWE_EVENT_CREATE from any custom-defined application (e.g., from
within an enhancement implementation).

System workflow events (including those generated by change documents) are
actually created as part of an asynchronous update process. This update process is
the recommended technique for event creation in customer applications. In other
words, you should create a workflow event by means of the CALL FUNCTION IN
UPDATE TASK statement. The technique guarantees that the event will be created
only upon a successful COMMIT execution.

7.1.3	 Application Development Implications

There are a number of main implications of the SAP Business Workflow event
handling for application development, such as the following:

EE Due to the asynchronous character of event handling, the process has less impact
on user productivity to compare with synchronous user exits.

EE If an application error occurs during workflow event handling it doesn’t affect the
source application; on the other hand, bug investigation in workflow applications
can be more complex again due to the asynchronous nature of the process.

EE Because workflow event handling is executed in its own memory context,
it isn’t possible to access memory areas of the host application during event
processing.

EE The event handler can report a temporary error (e.g., if some resource is blocked
by another application). In this case, the workflow runtime system can restart
the handler automatically in a predefined period of time.

EE Some event processing options, such as the event queue, are configured inde-
pendently of the customer application. This can impact the processing delay,
which can vary from milliseconds to minutes.

© 2013 by Galileo Press Inc., Boston (MA)232

Workflow as a User Exit7

7.2	 Practical Example

As an example, let’s create a linkage between vendor master record creation and
our own external application. To keep pace with modern technology, we’ll do it
from scratch using ABAP objects as a foundation for our developments.

7.2.1	 Prerequisites

Certainly this small chapter cannot be a comprehensive guide to SAP Business
Workflow customizing and design. We assume that all of the necessary configura-
tion activity is already performed in your system.

Figure 7.4  Transaction SWU3—The Starting Point of SAP Business Workflow Configuration

To check SAP Business Workflow configuration and also perform automatic Cus-
tomizing, use Transaction SWU3. The required settings are shown in Figure 7.4.
The rule of thumb for this transaction is that you should assure that all elements
of the subtree Maintain Runtime Environment are marked with green ticks
and at least the two upmost elements of the Maintain Definition Environment

233

Practical Example 7.2

subtree (Maintain Prefix Numbers and Check Number Ranges) should also be
green. If this is the case in your system, then you can create SAP Business Workflow
development objects and run workflows.

7.2.2	 Workflow-Enabled Class

In the IDES system, we created a demo class named ZCL_KRED_WF_EVENT. To make
it workflow-enabled, we must add to its definition IF_WORKFLOW interface, which in
reality is a combination of two other interfaces: BI_OBJECT and BI_PERSISTENT.

Attributes

Because we plan to implement manipulations with the vendor master record, we
add public read-only attribute G_LIFNR of type LIFNR and mark it as a key attribute.
This attribute will be a unique identifier of our class instance in the runtime.

We also create a private attribute, GS_LFA1 of type LFA1, which will store the cor-
responding vendor record in the runtime. Figure 7.5 shows the Attributes section
of the class as it is seen in Transaction SE24.

Figure 7.5  Attributes of the Workflow-Enabled Class

© 2013 by Galileo Press Inc., Boston (MA)234

Workflow as a User Exit7

Events

Now we define the public event CREATED, which will be the workflow event we
hope to invoke upon creation of the vendor master record. Figure 7.6 shows the
Events tab of our class definition.

Figure 7.6  Event Definition of the Workflow-Enabled Class

Methods

When the workflow runtime system tries to execute event handlers, it passes an
object reference (in our task it’s a vendor number) in specific internal format. To
convert the reference from and to an internal system representation, we have to
implement two methods of interface BI_PERSISTENT: FIND_BY_LPOR and LPOR (Local
Persistent Object Reference). LPOR consists of object identification (in our case,
it’s a vendor number), object type category (for ABAP classes, it’s CL), and object
type name (ZCL_KRED_WF_EVENT for our class).

The BI_PERSISTENT~FIND_BY_LPOR method is static, and its goal is to find the cor-
responding business object in the system, create an instance of our class, and return
the instance as a result. LPOR has a structure of SIBFLPOR. In this case, the system

235

Practical Example 7.2

passes an internal representation of the vendor number to the method, and we
then have to extract the vendor number and create an instance of our class. See
the implementation in Listing 7.1.

METHOD bi_persistent~find_by_lpor.
 DATA: local_ref TYPE REF TO zcl_kred_wf_event.
 CREATE OBJECT local_ref EXPORTING i_lpor = lpor.
 result = local_ref.
ENDMETHOD.

Listing 7.1  BI_PERSISTENT~FIND_BY_LPOR Method Implementation

BI_PERSISTENT~LPOR is an instance method, and it must return an internal repre-
sentation of the business object identification in the form of a LPOR. In this case,
we have to convert the vendor number into a LPOR. The source code of the method
is shown in Listing 7.2.

METHOD bi_persistent~lpor.
 result-catid = ‘CL’.
 result-typeid = ‘ZCL_KRED_WF_EVENT’.
 result-instid = g_lifnr.
ENDMETHOD.

Listing 7.2  BI_PERSISTENT~LPOR Method Implementation

Another interface method we need to implement is BI_PERSISTENT~REFRESH. It
should refresh runtime instance data from the corresponding database data. In
our example, it can select a corresponding record from the Table LFA1 database
(see Listing 7.3).

METHOD bi_persistent~refresh.
 SELECT SINGLE * INTO gs_lfa1 FROM lfa1 WHERE lifnr = g_lifnr.
ENDMETHOD.

Listing 7.3  BI_PERSISTENT~REFRESH Method Implementation

Now we implement the instance CONSTRUCTOR method with only one parameter: LPOR.
For our task, the implementation of the CONSTRUCTOR can look like Listing 7.4. Here
we just initialize our key attribute G_LIFNR and call method BI_PERSISTENT~REFRESH
to complete the task.

© 2013 by Galileo Press Inc., Boston (MA)236

Workflow as a User Exit7

METHOD constructor.
 g_lifnr = i_lpor-instid.
 me->bi_persistent~refresh().
ENDMETHOD.

Listing 7.4  CONSTRUCTOR Implementation

Note

In the available IDES system (which is SAP ERP with EhP4) the installed methods
BI_PERSISTENT~FIND_BY_LPOR and BI_PERSISTENT~REFRESH don’t have any exceptions.
They should have exceptions, however, because these methods should be capable of
reporting errors to the workflow runtime system in case; for example, the object can’t
be found. At the time of this writing, the reason for the lack of exceptions in these
methods remains unclear.

Functional Method

At this part of the process, we should implement a demo method, which we’ll run
in the background as a reaction to vendor creation. We won’t create a real applica-
tion; instead, we’ll just throw some message for demonstration purposes.

We name the demo method BACKGROUND_METHOD. This will be an instance and public
method. We also declare that the method can throw a class-oriented exception:
CX_BO_APPLICATION. This is a standard exception root for workflow-enabled meth-
ods. In the implementation (Listing 7.5), we only throw exception CX_BO_ERROR
(which is a subclass of CX_BO_APPLICATION) with a method name.

METHOD background_method.
 RAISE EXCEPTION TYPE cx_bo_error
 EXPORTING class_name = ‘BACKGROUND_METHOD’.
ENDMETHOD.

Listing 7.5  BACKGROUND_METHOD Implementation

Now the class is ready to be used in workflow event linkage.

7.2.3	 Standard Task

The standard task is an intermittent object that contains additional properties of
an executable code, which makes it accessible from the context of the workflow
runtime system. Standard tasks are maintained in Transaction PFTC.

237

Practical Example 7.2

Note

A standard task is the development cross-client object. When you save the object, the
system requests a package name for the standard task.

For the sake of our example, we need a standard task to execute our BACKGROUND_
METHOD in the context of the workflow. On the first screen of Transaction PFTC, we
choose the Standard Task value in the Task type list box, enter “WF_ENHFI” into
the Task field, and finally click the Create toolbar button as shown in Figure 7.7.

Figure 7.7  PFTC Transaction Starting Screen

Basic Data

On the next screen, we enter arbitrary information into the descriptive text fields
(Abbr., Name, Work item text) as shown in Figure 7.8. The main fields we have
to fill in are located in the box Object Method. Here we enter “ABAP Class” as
Object Category, “ZCL_KRED_WF_EVENT” as Object Type, and “BACKGROUND_
METHOD” as Method. We also need to tick the Synchronous object method
and Background processing checkboxes below the method name.

After saving the task, the system assigns its number automatically. Our task has
number 99900189. The fully qualified identifier of the task will be TS99900189.

© 2013 by Galileo Press Inc., Boston (MA)238

Workflow as a User Exit7

Figure 7.8  Standard Task Basic Attributes

Triggering Events

The next data tasks we have to define are located on the Triggering events tab.
Here we specify an event the task will start upon. For our example, we specify the
event CREATED from our class ZCL_KRED_WF_EVENT (see Figure 7.9). Note that we
also specify “ABAP Class” as the Object Category.

To finalize the triggering event setting, we click on the activation button. This
button is gray but turns green with activation. This is a part of customizing; when
clicking the event activation, a pop-up window with the Customizing transport
request selection appears.

239

Practical Example 7.2

Figure 7.9  Standard Task Triggering Events

After entering the triggering event linkage, we can save the task. It’s now ready to
use in SAP Business Workflow.

Note

For the sake of simplicity, in this example, we omit parameter-passing options for the
method and event (called binding here). For our example, system default settings should
be enough.

© 2013 by Galileo Press Inc., Boston (MA)240

Workflow as a User Exit7

7.2.4	 Event Creation

Now that we’ve prepared all of the development objects, we can link the vendor
master creation to our newly created objects in Transaction SWEC. In this transac-
tion, we maintain the linkage between the system change documents and workflow
events. The vendor master has its predefined change document object KRED. Follow
these steps (see Figure 7.10):

1.	Enter “KRED” as the value for Change doc.object.

2.	Enter “ABAP class” in the Object Category field.

3.	Enter “ZCL_KRED_WF_EVENT” as the Object Type.

4.	Enter “CREATED” as the Event type.

5.	Tick the Create radio-button.

Figure 7.10  Change Document Linkage to Workflow Events

241

Practical Example 7.2

By following these steps, you tell the system to invoke the event when the vendor
master record is created.

Note

You can also set field restrictions for each event linkage to further refine event starting
conditions.

7.2.5	 Now Test!

For testing purposes, it’s recommended to first turn on the workflow event trace
through Transaction SWELS.

Note

The event trace should be used mainly in the test system. Unrestricted event traces can
consume considerable database space.

Now let’s create a vendor master record and see if our event linkage is working. In
the IDES system, we created a copy of T-K521C00 vendor with number 0100000064.
After vendor creation, look into the workflow event trace in Transaction SWEL.
See the result in Figure 7.11.

Figure 7.11  Event Trace After Vendor Creation

© 2013 by Galileo Press Inc., Boston (MA)242

Workflow as a User Exit7

The event was invoked successfully. By double-clicking on the event line, you can
see more details (see Figure 7.12).

Figure 7.12  Event Trace Detailed Information

To see even more details, click the Work item toolbar button and see workflow-
specific information. Figure 7.13 shows that the work item is in error status because
our method BACKGROUND_METHOD did nothing except throw an exception. The infor-
mation box in Figure 7.13 shows the result of our implementation.

243

Summary 7.3

Figure 7.13  Work Item Information

Now we’ve achieved the goals of this chapter: We linked a workflow event to a
particular business action (vendor creation) and managed to execute a newly defined
method in background mode.

7.3	 Summary

While you might think that the process we walked you through in this chapter
seemed cumbersome (and don’t forget that we omitted a lot of details to make the
picture relatively simple), this process gives you another degree of design freedom.
Using standard and custom-defined workflow events, you can further expand
potential design capabilities of the system, including sophisticated, automatic, or
interactive document chains; B2B and A2A scenarios; and complex data distribution
models that can be developed by using SAP Business Workflow functionality.

© 2013 by Galileo Press Inc., Boston (MA)

245

The Author

Sergey Korolev graduated from Moscow State University in
the former USSR, and has worked as a software engineer since
1984, exploring many different flavors of software devel-
opment: system programming for mainframes, proprietary
graphical user interfaces, image recognition software, and
business software. In 1999, he started his SAP career as an
ABAP and Workflow developer and consultant. Since 2007,
he has been working as a freelancer providing services for
various international clients, including SAP itself.

Being a cappuccino addict, he often spends his working time in coffeeshops (pro-
vided the client offers WIFI access). When out of town, he particularly enjoys
visiting small local jazz clubs.

© 2013 by Galileo Press Inc., Boston (MA)

247

A

ABAP Objects class
CL_EXITHANDLER, 32

Account assignment, 135
Accounts Payable, 68
Accounts Receivable, 68
Account type, 116
ALV list, 153
Append structure, 51, 69, 93
Application code, 25

B

BAdI, 31
AC_DOCUMENT, 149
BADI_FDCB_SUBBAS01, 131
BADI_FDCB_SUBBAS05, 131
CALL BADI, 34
Classic, 31
CUSTOMER_ADD_DATA, 72, 76, 85, 86,
90, 170
CUSTOMER_ADD_DATA_BI, 170, 200
CUSTOMER_ADD_DATA_CS, 72, 79, 81,
85, 86, 107
FAGL_DERIVE_PSEGMENT, 140
FAGL_DERIVE_SEGMENT, 139
FAGL_ITEMS_MENUE01, 164
FAGL_ITEMS_MENUE02, 164
FAGL_PERIOD_CHECK, 139
FI_F110_SCHEDULE_JOB, 217
FI_HEADER_SUB_1300, 129
FI_LIMIT_ACCOUNT, 66
FI_TRANS_DATE_DERIVE, 139
GET BADI, 34
GET_INSTANCE, 37
Kernel-based, 31
TR_GET_ACCNT_ASSIGN, 140
VENDOR_ADD_DATA, 72, 106, 108
VENDOR_ADD_DATA_BI, 202
VENDOR_ADD_DATA_CS, 72, 107, 108

BAdI definition, 84
CUSTOMER_ADD_DATA, 184
CUSTOMER_ADD_DATA_BI, 184
FAGL_AUTHORITY_CHECK, 164
FAGL_ITEMS_CH_DATA, 165
FI_ITEMS_MENUE01, 157
FI_ITEMS_MENUE02, 157
VENDOR_ADD_DATA, 185
VENDOR_ADD_DATA_BI, 185

Batch input, 167, 197
Binding, 239
Breakpoint, 22, 30
BSEG

DMBTR, 115
BTE, 24, 28, 124

00001005, 138, 144
00001011, 138
00001020, 144
00001025, 144
00001030, 145
00001050, 149
00001070, 122, 124
00001080, 122, 138
00001085, 138
00001140, 137
00001310, 89
00001320, 90
00001321, 91
00001330, 88
00001340, 90
00001350, 90
00001360, 90
00001410, 109
00001420, 109
00001421, 109
00001430, 109
00001440, 109
00001450, 109
00001460, 109
00001510, 92, 102
00001520, 102
00001550, 92

Index

© 2013 by Galileo Press Inc., Boston (MA)248

Index

00001610, 156
00001620, 156
00001630, 162, 165
00001640, 153, 164
00001650, 162, 163, 165
00001703, 208
00001705, 213
00001719, 214
00001751, 203
00001762, 209
00001763, 210
00001764, 212
00002105, 218
00002310, 65
00002810, 190
Sample function module, 30

BTE application code, 25, 29
BTE configuration, 28
BTE customer event, 29
BTE partner event, 28
BTE process, 24, 29

00001020, 213
00001030, 215
00001040, 215
00001050, 211
00001053, 209
00001060, 209
00001061, 210
00001068, 211
00001074, 211
00001076, 211
00001100, 139
00001110, 138
00001120, 145
00001130, 146
00001150, 146
00001170, 146
00001809, 223
00001810, 220, 223
00001811, 224
00001815, 223
00001819, 218
00001820, 219
00001821, 221
00001830, 220
00001831, 222

00002820, 190
Default function name, 24
Multiple subscription, 30
Sample function module, 30

BTE product code, 26
Business Add-In, 31
Business Transaction Event, 24

C

Change document, 69, 87
Chart of accounts, 42
Classic BAdI, 32
Classic ledger, 118
Cluster table, 113
Coding block, 135

BSEG, 135
CI_COBL, 135

Custom defined fields, 135
CUSTOMER_ADD_DATA

CHECK_ADD_ON_ACTIVE, 184
CUSTOMER_ADD_DATA_BI

CHECK_DATA_ROW, 184
FILL_BI_TABLE_WITH_OWN_SEGMENT,
184
MODIFY_BI_STRUCT_FROM_STD_SEG,
184
PASS_NON_STANDARD_SEGMENT, 184

Customer enhancements, 17, 18, 21
Customer function module component, 20
Customer product, 26

D

Data element, 42
Data enhancements, 68
Dialog processing, 137
Domain

List of values, 42
Value table, 42

Dunning, 203
Dunning printout phase, 212
Dunning run, 206, 207
Dynamic assign, 62, 68, 110

249

Index

E

Electronic bank statement, 189
Enhancement Framework, 34, 35
Enhancement project, 18
Enhancement spot, 35, 185, 200
Enhancement techniques, 17
Enjoy transactions, 121, 124
Event creation, 231
Event handling, 228
Event processing, 231
Export parameters, 163

F

FI Business Framework, 24
Filtered BAdI, 35
Flexible General Ledger, 117, 118, 119, 120,

140, 151
Flow logic, 53, 61, 93
Foreign key, 46
Function group, 103, 148

ATAB, 55, 59
FAGL_ITEMS_SELECT, 163
FARI, 103
FI_ITEMS, 153
FIPI, 186
GL_ACCOUNT_MASTER_MAINTAIN, 50,
64
RWCL, 121, 147, 148

Function module, 100
AC_DOCUMENT_CREATE, 148, 188
AC_DOCUMENT_GENERATE, 148
AC_DOCUMENT_POST, 148, 188
BAPI_ACC_EMPLOYEE_EXP_POST, 188
BAPI_ACC_EMPLOYEE_PAY_POST, 188
BAPI_ACC_EMPLOYEE_REC_POST, 188
BF_FUNCTIONS_READ, 30
DATE_TO_PERIOD_CONVERT, 119
ERP_IDOC_INPUT_CREDITOR, 180
ERP_IDOC_INPUT_DEBITOR, 180, 184
EXIT_RFEBBU10_001, 194
EXIT_RFEKA400_001, 189
EXIT_SAPLKD02_001, 185
EXIT_SAPLVV01_001, 200

EXIT_SAPLVV02_001, 186
EXIT_SAPMF02D_001, 110
EXIT_SAPMF02H_001, 66
EXIT_SAPMF02K_001, 109
FAGL_ITEMS_DISPLAY, 163
FI_ITEMS_DISPLAY, 153, 163
FI_PRINT_DUNNING_NOTICE, 215
FI_PRINT_DUNNING_NOTICE_PDF, 215
FI_PRINT_DUNNING_NOTICE_SMARTF,
215
GET_DUNNING_CUSTOMIZING, 215
GL_ACCT_MASTER_MAINTAIN, 40
IDOC_INPUT_ACC_EMPLOYEE_EXP, 188
IDOC_INPUT_ACC_EMPLOYEE_PAY, 188
IDOC_INPUT_ACC_EMPLOYEE_REC, 188
IDOC_INPUT_CREDITOR, 179
IDOC_INPUT_DEBITOR, 179
IDOC_READ_COMPLETELY, 182
MASTERIDOC_CREATE_CRECOR, 202
MASTERIDOC_CREATE_CREMAS, 202
MASTERIDOC_CREATE_DEBCOR, 200
MASTERIDOC_CREATE_DEBMAS, 200
MASTERIDOC_CREATE_GLCORE, 199
MASTERIDOC_CREATE_GLMAST, 199
MASTER_IDOC_DISTRIBUTE, 199
MODX_FUNCTION_ACTIVE_CHECK, 22
OUTBOUND_CALL_00002310_E, 65
PC_FUNCTIONS_READ, 30
RWIN_CHECK_SUBSET, 147
TABSTRIP_INIT, 41
TABSTRIP_LAYOUT_READ, 41, 55, 72

Function module exit
FEB00004, 189
VSV00001, 185

Functional method, 236
Funds Management, 140

G

General ledger, 39
GET BADI, 37
GUI status enhancement, 121

© 2013 by Galileo Press Inc., Boston (MA)250

Index

I

IDoc processing, 184, 185
Implicit enhancement, 38
Import parameters, 163
Interface

BI_OBJECT, 233
BI_PERSISTENT, 233, 234
IF_WORKFLOW, 233

K

Kernel-based BAdI, 34

L

Legacy System Migration Workbench
(LSMW), 167

Line-item report, 151
Local Persistent Object Reference (LPOR), 234
Logical database, 117, 152

DDF, 117
KDF, 117, 152
LDF, 152
SDF, 117, 152

Logical messages, 179
LPOR, 234

M

Maintenance view, 46
V_T80D, 141
VWTYGB01, 142

Maintenance view cluster
VC_TAMLAY_00, 55, 58
VC_TAMLAYA_00, 55
V_T004_B, 60

Master data enhancements, 39
Menu enhancement, 157, 164
Menu exit, 19
Module pool, 107
Module pool SAPMF05A, 121
Multicash, 189

O

Open FI, 24
Output layout enhancement, 161

P

PAI modules, 64, 137
Partner functions, 97
Partner products, 26, 96
Payment method, 217
Payment proposal, 217
Payment run, 219
PBO modules, 63, 64, 82, 85, 137
Program

RBDSECRE, 202
RBDSEGLM, 198
RFBIBL00, 186
RFBIDE00, 169, 170, 184
RFBIDE10, 198
RFBIKR00, 167, 169, 170
RFBIKR10, 198
RFEBKA00, 189
RFEKA400, 189
RFBISA10, 198
RGGBS000, 142
RPCIPE00, 187
SAMF02D, 68
SAMF02K, 68
SAPF110V, 217
SAPF150S2, 207
SAPLFAGL_ITEMS_DISPLAY, 165
SAPGL_ACCOUNT_MASTER_START, 40
SAPLFDCB, 133
SAPMF02C, 92, 93
SAPMF02D, 87
SAPMF02H, 65, 66
SAPMF05A, 121, 147

Publish and subscribe (P&S), 23, 24, 89, 137

R

Record type, 168
Relational Database Management System

(RDBMS), 111

251

Index

Report development, 151
Repository Information System, 113
RW Interface (RWIN), 146, 147

TRWPR, 147

S

SAP Business Workflow, 227
SAP HR Payroll, 187
SAP LSMW, 170
SAP NetWeaver Master Data Management,

197
SAP Smart Form, 214
Secondary indices, 116
Segmental reporting, 140
SEPA, 224
Standard logic, 41
Standard task, 228, 236
Structure

BDIFIBIWA, 168, 181
BGR00, 168
BKN00, 168
BKNA1, 169
BLF00, 168
CUSTOMER_ORG_DATA, 184
GLACCOUNT_CCODE_DATA, 51
INVFO, 135
RF61B, 93
SIBFLPOR, 234

Subroutine, 141, 142
Substitution, 142
SWIFT MT940, 189

T

Table
BKPF, 112
BSAD, 117
BSAK, 117
BSAS, 117
BSEC, 114
BSED, 114
BSEG, 113, 114
BSES, 114
BSET, 114, 115

BSID, 117
BSIK, 117
BSIS, 117
EDIFCT, 179
FAGLFLEXT, 119
FEBEP, 190
FEBKO, 190
FEBRE, 190
GB01, 142
GLT0, 118
KONV, 113
KNA1, 69
KNB1, 69, 86
KNC1, 119
KNKK, 93, 94, 96
KNVV, 86
LFA1, 69
LFB1, 69
LFC1, 119
MHND, 207
MHNK, 207
PPDHD, 187
PPDIT, 187
SKA1, 41, 50
SKB1, 41, 50, 51, 64
SXDA2, 170
T004, 42
T020, 96
T061S, 97, 99, 103
T061V, 99, 103
T881, 119
TAMLAY1, 55
TAMLAY2, 55
TAMLAYA, 55
TAMLAYB, 55
TBE01, 24, 25
TBE11, 26
TBE12, 26
TBE22, 26
TBE23, 26
Technical settings, 44
TPS01, 24, 25
VBKPF, 116
VBSEC, 116
VBSEGA, 116
VBSEGD, 116
VBSEGK, 116

© 2013 by Galileo Press Inc., Boston (MA)252

Index

VBSEGS, 116
VBSET, 116

Tabstrip, 58
Total tables, 117
Transaction

BD12, 199
BD14, 201
BD18, 198
CMOD, 18
FB01, 129
F-02, 121, 142
F-42, 121
F110, 217
F150, 203, 217
FAGLL03, 151, 163
FB01, 142
FB50, 121, 129
FB50, 142
FB60, 121, 124, 130, 142
FB70, 124, 130
FBD1, 129
FBD5, 129
FBL1N, 151
FBL3N, 151, 160
FBL5N, 151
FD32, 92, 93, 98
FD33, 92, 93
FIBF, 25, 65, 96
FS00, 40, 66
FS01, 41
FS02, 41
FS03, 41
FSP0, 40
FSS0, 40, 61, 64
PCP0, 187
PFTC, 236
RBDSECRE, 201
RBDSEDEB, 199
SE11, 47, 50, 113
SE18, 31
SE24, 233

SE80, 52
SM30, 49, 97
SM34, 58
SM59, 230
SMOD, 18, 109
SPRO, 74
SWEC, 240
SWEL, 241
SWELS, 241
SWO1, 228
SWU3, 232
WE30, 179, 181
WE57, 179
XD02, 72
XD03, 72
XK01, 170
XK02, 170

V

Validation, 142
VENDOR_ADD_DATA

CHECK_ADD_ON_ACTIVE, 185
VENDOR_ADD_DATA_BI

CHECK_DATA_ROW, 185
FILL_BI_TABLE_WITH_OWN_SEGMENT,
185
FILL_FT_TABLE_USING_DATA_ROWS, 185
MODIFY_BI_STRUCT_FROM_STD_SEG,
185
PASS_NON_STANDARD_SEGMENT, 185

Vendor control data, 105
Vendor master enhancements, 103

W

Where-used list, 35
Workflow event, 229
Workflow template, 228

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do
recommend it, for example, by writing a review on http://www.sap-press.com. If
you think there is room for improvement, please get in touch with the editor of the
book: kelly.harris@galileo-press.com. We welcome every suggestion for improve-
ment but, of course, also any praise!

You can also navigate to our web catalog page for this book to submit feedback or
share your reading experience via Facebook, Google+, Twitter, email, or by writing
a book review. Simply follow this link: http://www.sap-press.com/H3171.

Supplements

Supplements (sample code, exercise materials, lists, and so on) are provided in your
online library and on the web catalog page for this book. You can directly navigate
to this page using the following link: http://www.sap-press.com/H3171. Should we
learn about typos that alter the meaning or content errors, we will provide a list
with corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at SAP PRESS,
please feel free to contact our reader service: customer@sap-press.com.

i

http://www.sap-press.com
mailto:kelly.harris%40galileo-press.com?subject=
http://www.sap-press.com/H3171
http://www.sap-press.com/H3171
mailto:customer%40sap-press.com?subject=

ii

About Us and Our Program

The website http://www.sap-press.com provides detailed and first-hand information
on our current publishing program. Here, you can also easily order all of our books
and e-books. For information on Galileo Press Inc. and for additional contact options
please refer to our company website: http://www.galileo-press.com.

%20http://www.sap-press.com
http://www.sap-press.com
http://www.galileo-press.com

iii

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation
rights are reserved by the author and Galileo Press; in particular the right of repro-
duction and the right of distribution, be it in printed or electronic form.

© 2011 by Galileo Press Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you
may print the e-book for personal use or copy it as long as you store this copy on
a device that is solely and personally used by yourself. You are not entitled to any
other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third
parties. Furthermore, it is not permitted to distribute the e-book on the Internet,
in intranets, or in any other way or make it available to third parties. Any public
exhibition, other publication, or any reproduction of the e-book beyond personal
use are expressly prohibited. The aforementioned does not only apply to the e-book
in its entirety but also to parts thereof (e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark
may not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which
person may use this copy. If you, dear reader, are not this person, you are violating
the copyright. So please refrain from using this e-book and inform us about this
violation. A brief email to customer@sap-press.com is sufficient. Thank you!

customer%40sap-press.com
mailto:customer%40sap-press.com?subject=

iv

Trademarks

The common names, trade names, descriptions of goods, and so on used in this
publication may be trademarks without special identification and subject to legal
regulations as such.

All of the screenshots and graphics reproduced in this book are subject to copyright
© SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany. SAP, the SAP logo,
mySAP, mySAP.com, SAP Business Suite, SAP NetWeaver, SAP R/3, SAP R/2, SAP
B2B, SAPtronic, SAPscript, SAP BW, SAP CRM, SAP EarlyWatch, SAP ArchiveLink,
SAP HANA, SAP GUI, SAP Business Workflow, SAP Business Engineer, SAP Business
Navigator, SAP Business Framework, SAP Business Information Warehouse, SAP
interenterprise solutions, SAP APO, AcceleratedSAP, InterSAP, SAPoffice, SAPfind,
SAPfile, SAPtime, SAPmail, SAP-access, SAP-EDI, R/3 Retail, Accelerated HR, Acceler-
ated HiTech, Accelerated Consumer Products, ABAP, ABAP/4, ALE/WEB, Alloy, BAPI,
Business Framework, BW Explorer, Duet, Enjoy-SAP, mySAP.com e-business platform,
mySAP Enterprise Portals, RIVA, SAPPHIRE, TeamSAP, Webflow, and SAP PRESS are
registered or unregistered trademarks of SAP AG, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs,
neither the publisher nor the author, editor, or translator assume any legal respon-
sibility or any liability for possible errors and their consequences.

	Introduction
	Acknowledgments
	1 Enhancement Types
	1.1 Customer Enhancements (CMOD/SMOD)
	1.1.1 Function Module Exit
	1.1.2 Menu Exit
	1.1.3 Customer Exit Subscreen
	1.1.4 Finding Customer Enhancements
	1.1.5 Enhancements Summary

	1.2 Business Transaction Events (BTE)
	1.2.1 Events and Processes
	1.2.2 Configuration
	1.2.3 Finding Business Transaction Events
	1.2.4 Business Transaction Events Summary

	1.3 Business Add-In (BAdI)
	1.3.1 Classic BAdI
	1.3.2 Kernel-Based BAdI
	1.3.3 Filtered BAdIs
	1.3.4 BAdI Subscreen and Function Codes
	1.3.5 Finding BAdIs
	1.3.6 BAdI Summary

	1.4 Implicit Enhancements
	1.5 Summary

	2 Master Data Enhancements
	2.1 General Ledger Accounts
	2.1.1 Main Transaction Codes for General Ledger Account Master Data
	2.1.2 Data Enhancement of General Ledger Account MasterData Tables
	2.1.3 Screen Layout Enhancement
	2.1.4 Other Enhancements Available in General Ledger Account Master Data
	2.1.5 General Ledger Summary

	2.2 Accounts Payable and Accounts Receivable
	2.2.1 Maintenance Transactions
	2.2.2 Data Enhancements
	2.2.3 Screen Layout Enhancements

	2.3 Accounts Receivable (Customers)
	2.3.1 Define Your Own Subscreen
	2.3.2 Define Tabstrip Layout (Customer Screen Group)
	2.3.3 Activating a Screen Group via a BAdI Implementation
	2.3.4 Linking Your Own Subscreen
	2.3.5 Making the Screen Field Transaction Mode Aware and Updatable
	2.3.6 Calling Moments of BAdI Methods
	2.3.7 GUI Status Enhancement with Open FI (BTE)
	2.3.8 Other Open FI (BTE) Events
	2.3.9 Function Module Exits

	2.4 Customer Credit Management Data and Screen Enhancement
	2.4.1 GUI Status Enhancement
	2.4.2 Data Enhancement
	2.4.3 Status Screen Enhancement
	2.4.4 Defining and Activating Partner Products in Transaction FIBF
	2.4.5 Setting External Partner Functions
	2.4.6 Further GUI Status Enhancement with Table T061V
	2.4.7 Additional Credit Management Data User Exits

	2.5 Accounts Payable (Vendors)
	2.5.1 Screen and GUI Status Enhancement with Function Group FARI
	2.5.2 BAdI Definitions
	2.5.3 Business Transaction Events
	2.5.4 Function Module Exits

	2.6 Summary

	3 Posting to Accounting
	3.1 The Technical Structure of an Accounting Document
	3.1.1 The Header
	3.1.2 Items
	3.1.3 Parked Document Tables
	3.1.4 Secondary Indices
	3.1.5 Total Tables

	3.2 Core Program Modules of Accounting
	3.2.1 Screen Enhancement of Accounting Posting Transactions
	3.2.2 Screen Enhancement of General Ledger Posting Enjoy Transactions with BAdI
	3.2.3 Screen Enhancement of Customer or Vendor Enjoy Transactions with BAdI

	3.3 Accounting Document Data Enhancement
	3.4 Data Processing Enhancements during Dialog Processing
	3.4.1 Data Processing BTEs
	3.4.2 BTE Processes
	3.4.3 BAdI
	3.4.4 Substitutions and Validations

	3.5 Data Processing Enhancements during Document Saving
	3.5.1 BTE Events
	3.5.2 BTE Processes
	3.5.3 BAdIs

	3.6 SAP Internal Techniques for Processing Accounting Data Flow (RWIN)
	3.6.1 RWIN Summary

	3.7 Differences in Data Processing between Dialog Transactions and Program Functions
	3.7.1 Additional BAdI AC_DOCUMENT
	3.7.2 BTEs That Are Not Called
	3.7.3 Ending BTE 00001050 (POST DOCUMENT: Accounting Interface)

	3.8 Summary

	4 Enhancements in Reports
	4.1 Technical Architecture of the Line-Item Report
	4.1.1 Header and Footer Output Enhancement
	4.1.2 Menu Enhancement with BTE Events
	4.1.3 Menu Enhancement with BAdI
	4.1.4 Output Layout Enhancement

	4.2 New SAP General Ledger Account Line-Item Report Enhancements
	4.2.1 Header and Footer Output Enhancement
	4.2.2 Extended Authorization Check
	4.2.3 Menu Enhancement
	4.2.4 Enhancing the Output Layout

	4.3 Summary

	5 Inbound Scenarios in Financial Accounting
	5.1 Master Data Migration and Distribution
	5.1.1 Batch Input
	5.1.2 HR Master Data
	5.1.3 ALE/IDoc

	5.2 Postings Inbound Scenarios
	5.2.1 Batch-Input or Direct Input
	5.2.2 Payroll Results
	5.2.3 Postings via IDoc
	5.2.4 Electronic Bank Statement

	5.3 Summary

	6 Outbound Scenarios in Financial Accounting
	6.1 Master Data Distribution
	6.1.1 Batch Input
	6.1.2 ALE/IDoc tools

	6.2 Dunning
	6.2.1 BTEs in Transaction F150
	6.2.2 BTEs during the Dunning Run
	6.2.3 Dunning Summary

	6.3 Payment Program
	6.3.1 User Exits in Transaction F110
	6.3.2 User Exits in Payment Program SAPF110S

	6.4 Summary

	7 Workflow as a User Exit
	7.1 Workflow Events: Linking System Actions with External Applications
	7.1.1 Event Handling
	7.1.2 Event Creation Options
	7.1.3 Application Development Implications

	7.2 Practical Example
	7.2.1 Prerequisites
	7.2.2 Workflow-Enabled Class
	7.2.3 Standard Task
	7.2.4 Event Creation
	7.2.5 Now Test!

	7.3 Summary

	The Author
	Index

